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Abstract
There are many different approaches to real-time rendering of 
smoke. In this work, three different methods were tested and 
evaluated. Soft particles proved to be a reliable method to 
render smoke as particles doesn't have visible intersections 
with the scene. Smoke with volumetric lighting resulted in 
thick white convincing smoke, but it's too unstable to be used 
commercially. The soft particles solution were finally 
successfully implemented into the PC graphics engine at the 
game development company SimBin.
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1 Introduction
This work will compare different methods to render smoke realistic in 
games and implement the most appropriate method in the engine 
Simbin uses for PC racing games. The report assumpt that the reader is 
well knowledged in real-time rendering methods and vocabulary. 

1.1 Background

In the video game business, there is an ever going strive to get better 
graphics in the games. Realistic rendering of smoke have recently got 
more attention, but so far, no good solution has been found. Smoke is an 
important visual effect in racing games since they are one of the few 
dynamic parts of the game. Cars, people and particle effects are what 
usually is dynamic in a racing games. Most games focus on the cars, and 
only implements simple solutions for people and special effects like 
smoke. But to get a visually realistic result, all parts of the scene must be 
of the same high quality. Therefore, it's important to render smoke and 
the other special effects in a convincing way. 

Smoke is a very hard effect to render. It's made out of many tiny 
particles, which interact which the light in a complex way. With the 
advance of hardware, lightening calculations have recently become more 
and more advanced. But few have tried to improve particle rendering by 
using these more advanced lighting techniques. 

1.1.1 SimBin 

SimBin is a 
Swedish 
developer and 
publisher of 
racing games. 
They do 
development for 
both PC and 
XBOX platform. They have release titles as “Race 07 – The WTCC Game” 
and “GTR Evolution”. 

The renderer they use is a bought 3D engine called gMotor 2.0. This 
engine has been only little improved over the last years. And it comes 
with neither documentation nor support. The engine will be referenced 
as gMotor, CUBE engine or Simbin renderer throughout the report.
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1.2 Goal

These were the goals of the project:

• Perform a study of current research in the smoke rendering field

• Develop a simple separate test application

• Combine the results into the best solution for today's hardware and 
rendering pipelines

• Implement the solution in the PC renderer at Simbin 

1.2.1 Limitations

The following limitations constrained the project:

• No work will be done in refactoring current code that SimBin has.

• No implementation for XBOX will be done. 

• The solution proposed should be targeted for a racing game. So it 
might not be appropriate for any other type of games.

• The particle system developed should only be able to simulate and 
render smoke. 

1.3 Method
For the different parts of the projects, different methods were used. For 
research, a study of research papers and relevant books was performed. 
The combined result were summarized into the theory chapter of this 
report and proves as a basement for the discussion and implementation.

For application and effect development, a software development process 
were used. The final smoke effect and it's shaders were developed using 
the tools NVIDIA FxComposer 2.0 and AMD RenderMonkey 1.6. The 
development of the test application and the Simbin integration were 
done in Microsoft Visual Studio, and debugging was done with PIX.

1.3.1 Software development process

Even if this project was a one man project, a software development 
process were  used to structure the work. The software development 
process used in this project was a Scrum influenced model. At the 
beginning, a development plan were done containing the overall goals of 
the project. The work was divided into small tasks with priorities. For 
each month, the most important task, based on project value, were 
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selected and worked on. The work load and priorities were adjusted for 
each month.

1.3.2 Software architecture

The project consists of a test application, mostly used for rapid testing 
and evaluation of the different rendering, the particle system for 
rendering smoke, and an adapter to connect the particle system to the 
SimBin game code. Depending on chosen solution, the final 
implementation with the CUBE renderer might look different then what 
this architecture shows. 

1.3.3 NVIDIA FxComposer 2.0

FxComposer is an IDE for developing effects and shaders in HLSL and 
CgFx. It focuses more on effect development than on single shaders.  It's 
a useful tool for evaluating, developing, debugging, testing and 
optimizing shaders. The built-in support for handling DirectX Effect files 
makes it the first hand choice for many DirectX shader developers. The 
IDE comes with a large library of pre-made shaders.

This tool was only used for compiling and correcting the DirectX Effect 
files. 
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1.3.4 RenderMonkey 1.6

RenderMonkey is an IDE for developing shaders in GLSL and HLSL. It's a 
useful tool for evaluating, developing, debugging, testing and optimizing 
shaders. The tool simplify render target creation and can easily be used 
to rapidly test new shader ideas. The drawback is lack of good DirectX 
Effect support. This IDE also comes with a large library of premade 
shaders. 

This tool was used before FxComposer to test out shader ideas rapidly. 
It's faster to develop in RenderMonkey because  it has better support for 
render targets. 
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1.3.5 Microsoft DirectX9 SDK

The development in this work used the DirectX API for accelerated 3D 
graphics and therefore, the DirectX9 SKD was used. The DirectX9 SDK 
includes demos, library files, and header files for compiling projects using 
DirectX9. The test application is based on the test suite that is included in 
the SDK. 

1.3.6 Microsoft Visual Studio

The Microsoft Visual Studio was used as IDE for developing the C++ code. 
It's one of the most popular tools for developing products for the 
Microsoft platform. And the example projects in the DirectX9 SDK 
includes Visual Studio project files to simplify for users. 

1.3.7 PIX

PIX is a tool included in the DirectX SDK for debugging the rendering 
pipeline of a DirectX application. The main feature is the possibility to 
debug single pixels on the screen (or on render targets) and track down 
errors in the shaders by stepping trough the code of them. 
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2 Theory
The following chapters introduce the theory needed to understand the 
discussion and results. A good knowledge in computer graphics, 
computer programming and linear algebra is recommended. 

2.1 Rendering pipeline

The graphics rendering pipeline consists of three major stages, 
application, geometry and rasterization. The goal with the pipeline is to 
convert a 3D scene into a 2D image. 

 In the application stage, the application culls and send the models that 
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should be rendered to the graphics card. It also decides what render 
states to use, shaders and textures. The application stage has the 
responsibility to set up the matrices used. 

In the geometry stage , the vertices are transformed from model space 
into clip space. In this space, the triangles are clipped against the camera 
frustum. 

The rasterization stage renders the triangles as pixels to the screen. 

Since it's a pipeline, the stage which is the bottleneck has the greatest 
negative impact on the throughput. And therefore, this bottleneck 
should be main focus of optimization.

2.2 Shaders

Advances in graphics hardware have made it possible for graphic 
programmers' to program certain parts of the rendering pipeline. These 
programmable parts of the pipeline are called shaders. There are 
currently three types, vertex shaders, geometry shaders and pixel 
shaders. Pixel shaders are sometimes called fragment shaders, for 
example in OpenGL. The high-level shading language in DirectX is  HLSL 
and in OpenGL it's GLSL. NVIDIA also has their own shading language 
CgFx, which is very similar to HLSL in syntax but works in both DirectX 
and OpenGL.

Vertex Shader

Has all the vertices as input and has as the goal to transform them into 
cull space. Does also often do animation, lighting and more. 

The vertex shader is a part of the geometry stage of the rendering 
pipeline. 

Geometry Shader

Has vertices as input and can output more vertices if needed. 

The geometry shader is a part of the geometry stage of the rendering 
pipeline. 

Pixel Shader

Does computations for each pixel of the geometry rendered. Will decide 
exactly what color is sent to the blending stage. Since the pixel shader is 
executed for each pixel, it will the the shader that is (nearly always) 
executed the most. And should therefore be optimized the most. 

The pixel shader is a part of the rasterization stage of the rendering 
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pipeline. 

2.3 Instancing

Geometry instancing is a method to decrease bandwidth usage when 
rendering many copies of the same geometry.  This is done by reducing 
the overhead of drawing multiple copies of the same vertex buffer. In 
DirectX this can be setup by using different streams (at least two) when 
rendering. Each stream can contain data as position, color, uv-
coordinates and more. By setting different frequencies on these streams, 
one or more streams can be reuse many times and therefore saving 
memory and also increase performance. 

2.4 Particle systems

Particle systems have been used for special effects since the dawn of 
computer graphics. They are often used to render smoke, fire, explosion 
and more. The main reason to use visualize these effects with particle 
systems is that these types of effects originally consists of millions of 
small particles in real life. In a particle system, these small particles are 
approximated by larger particles following some basic rules. The more 
particles used, the better result. But the more particles, the slower it is. 

Main components of a particle system are, emitters, particles and forces. 
The emitter decides how creation of particles should be done. For 
example in which angle, quantity, speed, size and distribution. The 
particle should be possible to be rendered to the screen. Often as a 
billboarded quad. Sometimes, forces are used to affect the particle 
system, for example gravity or wind.  

When doing a particle system we must decide what type of geometry to 
send to the GPU. In other words, what vertices. It’s also important to 
decide where and when to transform the geometry to screen space for 
rasterization.

It have been standard to use quads (sometimes just single triangles) as 
representation for particles. These quads are usually billboarded to the 
screen which requires additional work. There also exist a technique 
called point sprites, in both DirectX and OpenGL, that allows us to render 
a simple billboarded image by just sending a single vertex for each 
particle to the GPU, compared to at least four when doing quads (and 
maybe also indices). This sprite will be scaled by the distance accordingly 
to a formula that can be tweaked. It’s easy to translate it (it’s the position 
of the vertex itself) but it’s not so easy to rotate it. Rotation would need a 
special vertex or fragment shader that does the rotation manually. 

Sprites can reduce the bandwidth usage a lot, at the cost of increased 
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complexity in the shader. Quads on the other hand allows more 
possibilities, for example stretching. If sprites is faster than quads 
depends on hardware and where the bottleneck is in the rendering 
pipeline.

2.5 Billboarding

Billboarding [13]  is the technique to rotate a quad to align to the screen. 
The technique have been popular for a long time in computer games to 
fake complex geometry. For example, the computer game Doom used 
billboarded animated sprites as enemy characters. Today, billboarding 
are used to fake distance geometry by a technique called impostors or 
used in particle systems. 

Billboards are often either viewplane-aligned or viewpoint-oriented. As 
Image 6 shows, there is a difference in facing of the billboard between 
the two alignments.  The calculation needed to billboard a quad can 
either be done on the CPU or on the GPU in a vertex shader. 

Viewplane-aligned billboards

One technique [14]  to do billboarding is to remove the rotation and 
scaling from the view matrix. This requires that the vertices of the quad 
are already positioned correctly in view space to be projected. Rotation 
and scaling can be removed by setting the upper left 3x3 in the 
projection matrix to the identity matrix. 

Another approach to viewplane-aligne billboards  is to do the positioning 
of thee vertices in a vertex shader. The goal with the shader will be to 
position each corner vertex for the quad so they form a viewplane 
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aligned quad. Since the world space vertex position is calculated in the 
shader, the quad doesn't need any position for the vertices. It only needs 
texture coordinates and the center position of the quad. The texture 
coordinates will be used to identify the four corners of the billboarded 
quad and offset them correctly from the center position. In this example, 
the following texture coordinates are used for the four corners:

(0,0) (0,1)

(1,0) (1,1)

From the view matrix, we can get the up and right vector of the camera 
in world space. Combining this with the texture coordinates and the size 
of the quad is enough to do billboarding. 

The following code snippet shows how it can be done in a HLSL vertex 
shader:

VS_OUTPUT vs_main( VS_INPUT Input )

{

   VS_OUTPUT Output;

   float3 rightVector = normalize(float3(matView[0][0], matView[1][0], 
matView[2][0] ));

   float3 upVector = normalize(float3(matView[0][1], matView[1][1], 
matView[2][1] ));

   float2 offset = (Input.texCoord.xy - 0.5f)*2; // scale from 0..1 to -1..1

   float4 position =  float4(billboardCenterPosition + 
billboardSize*(offset.x*rightVector + offset.y*upVector),1);

  // position is in world space

   Output.Position = mul( position, matWorldViewProjection ); 

   return( Output );

}

2.6 Fluid simulation

For realistic simulation and rendering of effects like smoke or water, a 
fluid simulation and rendering approach is needed. There are currently 
two popular methods for this:

• Simulate the fluid on the CPU and send the result as particles to the 
GPU for rendering as billboards. This is often called a particle system. 
The technique has been around since the dawn of computer graphics.

• Simulate the fluid on the GPU and render the result into textures. This 
will then be rendered by doing volume ray casting (or ray marching) 
on the GPU. This technique is new and rather unexplored, and there 
are few real-life implementations. The result can be very realistic but 
slow.
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Technique one burdens both CPU, bandwidth and GPU. Although in 
modern solutions, it’s often the bandwidth that’s the bottleneck. The 
GPU based technique only burdens the GPU ( but a lot ).

2.7 Soft particles

The aim with soft particles is to remove the ugly artifact that appears 
when the particle quad intersects the scene. There are a lot of different 
approaches to solve this, some more complicated than others. The 
simplest formula for soft particles is to fade the particle if it’s getting to 
close to the scene. To do this, the scene without particles has to be 
rendered first and the depth saved in a texture. When drawing the 
particles, the depth of the particle will be compared to the scene depth. 
The alpha should be increased by a smooth fade by this depth difference. 
The formula below in HLSL is the simplest possible for soft particles, and 
works very well. Scene_depth is the sampled depth (in view space) of the 
scene in the direction of the current pixel. Particle_depth is the depth (in 
view space) of the current particle pixel. Scale is used to control the 
“softness” of the intersection between particles and scene.

fade = saturate((scene_depth – particle_depth) * scale);

NVIDIA [1]  proposes a method that the following fade should be used 
instead of the linear one described above, to make the fade even 
smoother.

float Output = 0.5*pow(saturate(2*(( Input > 0.5) ? 1-Input : Input)),  
ContrastPower);
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Output = ( Input > 0.5) ? 1-Output : Output;

Umenhoffer [2]  proposes a method called spherical billboards to deal 
with these problems. In this method, the volume is approximated by a 
sphere. This method also deals with the near clip-plane problem that 
particles will instantly disappear if they get to close to the camera.

There is also an idea [3]  that the alpha channel can be used to represent 
the density of the particles. Although this method has the drawback that 
the textures might need to be redone by the artists.

The method by Microsoft [4] uses a combination of spherical billboards 
and a texture representation of the volume. But instead of using the 
alpha channel as a simple texture, they ray march the sphere and sample 
the density and volume from a 3D noise texture. The result can be seen 
in Image 8.

2.8 Mega Particles

Instead of rendering textured billboards in a particle system, a technique 
called “Mega Particles” [5]  render spheres to an off-screen texture. This 
texture is then blurred and randomly displaced using a fractal cube. The 
final result is blended into the scene, taking depth into account as with 
soft particles. The result is a volumetric cloud that is lit by lighting and 
look volumetric. The problem is that this technique suffers from the 
shower-door effect which makes it annoying to view and use in practice. 
It’s also harder for artist to control the final look. Also, going inside the 
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particles look like in the DirectX10 SDK.



cloud requires special treatment not mentioned in the slides. 

2.9 Lighting theory

The very common Phong Lighting model for real-time rendering divides 
the material lighting equation into diffuse, specular and ambient 
contributions. These three properties have worked well for solid 
materials, but they does not correctly approximate the lighting 
interaction with translucent materials. For example smoke requires a 
more complex lighting formula that includes the light scattering that 
happens inside the smoke. 

When lighting is scattering many times it's called multi scattering. Multi 
scattering [15] is the diffuse term in the Phong Lighting, but can also be 
calculated using the Mie scattering theory. Mie scattering can be 
approximated with the Henyey-Greenstein phase function [16]  seen in 
equation 1.

phg=
1
2

1−g2

1−2gcos g 2
3
2
 Equation 1

2.10 Deferred Rendering

This is a lighting rendering technique [6] [7] [8]  that lately has increased 
a lot in popularity. The normal way of shading is to perform the lighting 
calculations on a fragment when it is rasterized to the screen. This is 
often good but requires a lot of calculations if there are many lights. And 
the bad thing is that this fragment might later on be overwritten by some 
other fragment so the calculations might be a waste.

In deferred lighting (or deferred shading, or deferred rendering), you 
save the information about the fragment that is necessary to perform 
the shading (lighting) by rendering them to textures instead of doing the 
actual lighting calculation. When all geometry is rendered, the lighting 
will now be calculated only once per pixel on the screen. So no 
calculations will be wasted. This can perhaps be seen as a lazy evaluator.

The information saved per fragment is often:

• position ( or only depth )

• albedo ( the diffuse texture )

• normal

• specular
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When all geometry has been rendered and it’s time to perform the 
lighting, the lights needs to be represented as geometry when sent to 
rasterization. This geometry should fit the volume reached by the light. A 
smaller volume is faster to render. Point lights can be drawn either as 
spheres or just square billboards. Directional lights should be drawn as a 
full screen rectangle. And spotlights will be cones. Note that this shading 
technique allows for lights shaped in any form, not just these traditional 
ones. And sometimes, stenciling can be used to avoid unnecessary 
shading calculations. 

The big reason for using deferred rendering is how well it scales with 
more lights. Another reason that it has increased in popularity lately is 
how nice it works with recent post-process effects like Screen Space 
Ambient Occlusion (SSAO) and Depth of Field (DOF). 

The problem areas with deferred lighting are transparent objects and 
multisampling. If the original scene didn’t used per-pixel lighting (but 
instead maybe vertex lightning) on the whole scene then the deferred 
rendering might be slower than traditional rendering.

2.11 Position reconstruction

There are many occasions when the fragment position in world space 
needs to be reconstructed from a texture holding the scene depth (depth 
texture). One example of use is in deferred rendering when trying to 
decrease memory usage by not saving the position but instead only the 
depth. This will result in one channel of data, instead of three channels 
needed when saving the whole position. 

There are different ways to save the depth. The most popular are view 
space and screen space. Saving depth in view space instead of screen 
space gives two advantages. It's faster, and it gives better precision 
because it's linear in view space. 

This is how screen space depth can be rendered in HLSL:

struct VS_OUTPUT

{

   float4 Pos: POSITION;

   float4 posInProjectedSpace: TEXCOORD0;

};

// vertex shader

VS_OUTPUT vs_main( float4 Pos: POSITION )

{

   VS_OUTPUT Out = (VS_OUTPUT) 0; 

   Out.Pos = mul(Pos,matWorldViewProjection);
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   Out.posInProjectedSpace = Out.Pos;    

   return Out;

}

// pixel shader

float4 ps_main( VS_OUTPUT Input ) : COLOR

{

   float depth = Input.posInProjectedSpace.z / Input.posInProjectedSpace.w; 

   return depth;

}

The HLSL pixel shader below shows how the position can be 
reconstructed from the depth map stored with the code above. Although 
this is one of the slowest ways of doing position reconstruction since it 
requires a matrix  multiplication. 

float4 ps_main(float2 vPos : VPOS;) : COLOR0

{   

   float depth = tex2D(depthTexture,vPos*fInverseViewportDimensions + 
fInverseViewportDimensions*0.5).r;

   // scale it to -1..1 (screen coordinates)

   float2 projectedXY = vPos*fInverseViewportDimensions*2-1;

   projectedXY.y = -projectedXY.y;

   // create the position in screen space

   float4 pos = float4(projectedXY,depth,1);

   // transform position into world space by multiplication with the inverse 
view projection matrix

   pos = mul(pos,matViewProjectionInverse); 

   // make it homogeneous

   pos /= pos.w; // result will be (x,y,z,1) in world space

   return pos; // for now, just render it out

}

To reconstruct depth from view space, a ray from the camera position to 
the frustum far plane is needed. For a full screen quad, this ray can be 
precalculated for the four corners and passed to the shader. This is how 
the computer game Crysis did it [10] . But for arbitrary geometry, as 
needed in deferred rendering, the ray must be calculated in the shaders 
[9] . 

2.12 Texture atlas

Texture atlas [11] [12]  is a technique to group smaller textures into a 
larger texture. This decreases the number of state switches a renderer 
needs to do and therefore often increases performance. Texture atlases 
have been used for a long time in the video game industry for sprite 
animations. When using texture atlases, the uv-coordinates of the 
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models have to be changed so the original 0..1 map to the texture tiles in 
the atlas. Grouping of textures can be done manually by texture artists or 
with tools. The texture coordinate system can be changed to map the 
new texture in a tool, or in the shader at run-time. 

There are some limitations with using texture atlases compared to 
normal textures. First of all, all texture coordinates must initially be 
within 0..1 range. So for example, no “free” tiling can be used. The other 
problem is bleeding between tiles in the atlas when doing filtering, for 
example when using mipmaps.  

2.13 Ray-sphere intersection

The intersection test [13]  between a ray and a sphere is useful in 
raytracing, physics, picking and more. The test has three solutions, no 
intersection, one intersection, or two intersections. 

The ray can be defined as 

x(t) = a + tk

and the sphere as

(x – c) ( x – c ) = r^2

where c is the center of the sphere and r is the radius. 

It's simple to calculate the algebraic solution. But for better performance, 
a little bit of reorganization needs to be done to only perform squaring 
when actually needed. The result is the pseudo code below. A small bias, 
SMALL_BIAS, is needed to deal with inaccuracies in the calculations. This 
also results in that the solution with only one intersection point is 
removed. Instead, an intersection is always in two points. In the pseudo 
code, nearT and farT is the t value for the two intersections.

delta = a – c

A =  k dot k

B = 2 (delta dot k)

C = delta dot delta – r^2

disc = (B^2 – 4AC)

if disc <  SMALL_BIAS

   no hit

else

  hit

  sqrtDisc = square( disc )

  nearT = (- B -  sqrtDisc) / (2A)

  farT = (- B + sqrtDisc) / (2A)
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This is the HLSL code for the same algorithm. It's taken from the Soft 
Particle example in the DirectX10 SDK. 

#define DIST_BIAS 0.01

bool RaySphereIntersect( float3 rO, float3 rD, float3 sO, float sR, out float 
tnear, out float tfar )

{

    float3 delta = rO - sO;

    float A = dot( rD, rD );

    float B = 2*dot( delta, rD );

    float C = dot( delta, delta ) - sR*sR;

    float disc = (B*B - 4.0*A*C);

    if( disc < DIST_BIAS )

    {

        return false;

    }

    else

    {

        float sqrtDisc = sqrt( disc );

        tnear = (-B - sqrtDisc ) / (2*A);

        tfar = (-B + sqrtDisc ) / (2*A);

        return true;

    }

}

2.14 Gaussian blur

There are many different filters to blur an image and one of the more 
popular ones are the Gaussian blur filter. It's based on the Gaussian 
Function, a bell-shaped curve function. The Gaussian blur filter does 
blurring by working as a low-pass filter, removing all high-frequencies in 
the image. 

When applying the Gaussian function as a blur filter on an regular 2D 
image, it has to be applied in both dimensions of the image.  By utilizing 
the linearly separability of the filter, the blurring can be done in one 
direction at a time which is often much faster than using the 2D Gaussian 
blur filter. 
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3 Results and Discussion
This chapter concludes the result from the thesis work. Three different 
solutions where developed. One based on soft particles, one based on 
mega particles and finally one based on an experimental particle 
technique using volumetric lighting. The implementation of the final 
result into the renderer at Simbin is presented as well.

As a first step, the fluid smoke simulation demo from the DirectX10 SDK 
was tested. Unfortunately, both speed and quality was unacceptable so 
the idea was abandoned right away. This approach will probably mature 
in the next years, but it's too early to implement it into a commercial 
racing game. There are also still to many DirectX9 only computers among 
the gaming population. So using a solution that requires DirectX10 or 
later isn't appropriate yet. 

3.1 Soft Particles

The first solution developed was a simple soft particles implementation. 
It was only tested in RenderMonkey and a comparison with softness 
enabled or disabled can be seen in Image 9. 

The solution used the simple fade described in Chapter 2.7 . Depth was 
rendered in view-space, and the billboarding was done in the vertex 
shader (for simple testing).  This technique is very robust, works well in 
all situations and only requires Shader Model 1. Many games use this 
solution to render large particles. 
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Image 9: The left image shows a scene with a single large green particle.  
Note the very distinct edge at the intersection of the particle quad and 
the scene. In the image on the right, the same particle is rendered. But  
this time, it's using the soft particles shader developed in this project. As  
seen, the intersection is now much smoother. 



One of the test cases, where a box uses the soft particle shader, can be 
seen in Image 10. As seen, the distance-fade can have more uses than 
just for particle systems. 

3.2 Mega particles

A solution based on the mega particles technique described in chapter 
2.8  was developed. This solution was only tested in RenderMonkey and 
the very noticeable screen-door effect was verified. Since the technique 
isn't based on any physical formulas or real life observations, the 
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Image 10: Top left image shows the first pass that  
renderer the scene, in this case a textured torus. Top right 
image shows the second pass, rendering the scene depth.  
Note that the lighter it is, the further away it is from the  
viewer. The bottom image shows the final pass where a 
textured cube is rendered using the soft particle shader.  
Because of the smooth fade, it's possible to see into the 
cube. It's behaving like fog. Note that there is no hard 
intersection between the two objects anywhere. 



implementation details of the shader and all parameters where decided 
by testing. 

The implemented method resulted in four sequential passes seen in 
Image 11. First, all particles are rendered as spheres, lit with ordinary 
Phong Lighting. This is rendered to an off-screen texture with at least 
three color channels. In the next step, the off-screen texture is blurred 
using the two-pass Gaussian blur filter. 

At last, a full screen quad is rendered with the mega particles shader. The 
vertex shader is a simple shader that stretches the quad over the screen 
and creates texture coordinates for the vertices. These texture 
coordinates should map to screen coordinates and are passed to the 
fragment shader. In the fragment shader, the texture coordinates will 
together with a time variable create a 3D texture coordinate. This 3D 
texture coordinate is then used to sample from a 3D noise texture. 
Because of the use of time in the texture coordinates. The result will vary 
periodically when time passes. Creating the illusion of an animation as 
seen in Image 12. The 3D noise sample is used as a seed when some 
random samples are taken from the previously blurred texture. 

The example code below shows how the 3D noise texture is sampled in 
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Image 11: These four images shows the steps  
involved in rendering smoke using the mega 
particles technique. Top left image is a simple  
sphere rendered to a texture. Top right image is  
the sphere blurred in horizontal direction. Bottom 
left image is the sphere blurred in horizontal  
direction. And the bottom right image shows the 
result of using the mega particles shader.



the fragment shader. 

float2 coord = 
tex3D(NoiseTexture,float3(Input.TexCoord*1.25,fTime/8.0f)).rg;

The result was something that looked like a cloud, lit by a light. Some 
noticeable drawbacks are the difficulty in tweaking the noise sampling, 
so the final result gets enough detail without looking too unrealistic. 
Also, since the screen coordinates are used when sampling from the 
noise texture, when the sphere moves, or the camera, there will be a 
very noticeably shower-door effect.

3.3 Thick smoke with volumetric lighting

This is a new experimental technique based on the recent research in 
how to render smoke, clouds and snow waves. It's also inspired by the 
recent innovations in deferred rendering. Focus with the technique was 
on rendering non-physically correct but visually convincing thick smoke. 
Few other smoke rendering algorithms deal with thick white smoke. 

The basic idea is to render the particles as spheres. All these spheres will 
create the volume of the smoke. Then, lighting will be applied to this 
volume by raytracing through it and collecting the contribution in the 
direction of the light source. Some noise is also applied to add high 
frequency details and make it more “cloud like”. 

To create the volume for raytracing, the spheres must be rendered to 
two textures. The first texture saves the min and max depth in the view 
direction for the volume. The second texture saves the min and max 
depth in the light direction for the volume. These two textures will then 
approximate the volume of the cloud.

Drawbacks that initially were identified were the limit of only one light 
source and the difficulty to fade away dying particles. 
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Image 12: The image shows three random frames of a single mega 
particle. 



3.3.1 Test application

The test application was developed to easily test and tweak the 
parameters of the deferred particle technique in a real DirectX9 
application. The code was written to cleanly separate between test 
application code and the smoke rendering engine code. 

The test application code holds all the functionality necessary to launch, 
load and exit the application. This code is inspired and partly copied from 
the DirectX9 SDK examples. The GUI controls, for real-time tweaking of 
variables, are also in this part of the code. 

The smoke rendering engine is based on a set of abstract classes, making 
the foundation of functionality required for rendering of the smoke. The 
DirectX9 implementation inherits from these abstract classes, and 
implement them accordingly to DirectX9 specification. This architecture 
makes it easier to port the engine to other API's. Some of the more 
important object oriented design patterns used are the factory method 
( for textures ), singleton (for the renderer instance) and adapter 
( DirectX9 implementation) . 

In the test application, the shader parameters of the smoke can be 
changed and updated in real-time. This enables fast testing and 
development. Image 13 shows what it looks like when running the test 
application. 
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3.3.2 Fake rendering a sphere

Rendering the particles as hundreds of spheres as meshes, with triangles 
enough for the quality needed, would be slow. Therefore, the spheres 
are rendered as billboarded quads. A shader is used when rendering 
these quads and in this shader, an imaginary sphere, with center of the 
billboard and size of the particle, is raytraced. The view vector is checked 
against the sphere for intersection, the intersection points will be used 
when saving the depth to the textures. Image 14 shows the difference 
between rendering a sphere mesh and faking the sphere. There is some 
error since the sphere mesh isn't truly spherical because its made up of 
many tiny flat triangles. 
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Image 13: This image shows the test application in  
action with all the tweak-able parameters on the left.  
They can be changed and the result will be updated in  
real-time in the scene.



The drawback with the method is that no z-culling could be used. Since it 
would cull wrong in this simple implementation. 

3.3.3 Billboarding shader

The particle quadss are rendered by instancing to save bandwidth. The 
instancing is done in two streams of data. The first stream is shared for 
all particles. And the second stream is unique for each particle. The 
second stream is updated each frame.  

First stream holds following data:

– texture coordinates, for billboarding of the quad

Second stream holds following data:
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Image 14: In this example, Pass 0 renders a true sphere by doing rasterization of a  
sphere mesh. In Pass 1, a quad is rendered and an imaginary sphere is raytraced.  
For both these passes, the world position is written to a texture. In Pass 2, these 
two world positions are compared and the difference is written to the screen. As  
seen, most difference is around the edges of the sphere. 



– particle position, the center position of the particle,  used for 
billboarding and in sphere intersection

– size, the size of the particle, used in billboarding and in sphere 
intersection

– life, 0..1 range of the life of the particle with zero as dead and one as 
fully alive. It's used to fade away the particle.

– texture translation, two coordinates that select which of the four 
textures to use for this particle 

– texture rotation, an angel used to rotate the texture for this particle

The billboarding of the quads were done in the vertex shader as 
described in chapter 2.5. 

3.3.4 Position reconstruction

There are two textures that save the position data. 

1. A texture that save the min/max depth in the view direction for the 
volume.

2. A texture that save the min/max depth in the light  direction for the 
volume.

Since no comparison between current fragment result and previous (in 
the same render target) can be manually made in the shader, a blend 
mode must be used to save a min or max value. Trying to save the actual 
position with a min or max blend mode will fail because of obvious 
reasons. Therefore, we have to save the depth instead and later 
reconstruct the position from it as seen in Image 15. 
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In this work, the projected screen space depth is stored in the texture. 
This is far from optimal and better implementations should prefer view 
space depth. But for simplicity, this work will use projected screen space 
depth and reconstruct it the slow way by multiplying it with the inverse 
view-projection matrix. 

Because of the use of screen space depth in this work, 32-bit floating 
point textures have to be used to store the depth with good enough 
accuracy. Anything less will result in very noticeably artifacts. 

3.3.5 Ambient lighting

Ambient lighting is an approximation of the scattered indirect lighting. 
This lighting can lit areas in shadows, and also contribute with color 
bleeding. Therefore , the ambient lighting of the smoke is approximated 
by sampling from a cube map with a blurred image of the surrounding. 
This works the same way as reflection mapping. And the normal used is 
the direction from the center of the smoke to the closest position to the 
screen of the volume for the current pixel. Image 16 shows the 
difference with ambient lighting enabled or disabled.
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Image 15: This image shows 
the world position of the 
pixels of two particles. This  
world position have been 
reconstructed from the 
depth of two raytraced 
spheres in a previous pass.  
The position coordinates  
have simply been written to  
the screen and naturally  
colors the spheres. 0,0,0 ->  
white, 1,1,1 -> black, 1,0,0 ->  
red, and so on. 



3.3.6 Texturing

Textures were used to symbolize the density of the smoke. The goal with 
them was to add high frequency details to the smoke. 

To simplify the shader, only the four different textures shown in Image 18 
were used for the smoke particles, and the limit was hardcoded. These 
textures were stored in a texture atlas with dimensions 2x2. To improve 
the visual quality by giving even more diversity, the textures where 
rotated in the vertex shader in a random angle. 
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Image 16: The image at the top shows the smoke 
with ambient lighting, the image at the bottom 
shows the same smoke without any ambient  
lighting.



Both rotation angle and what texture to use were sent to the shader as 
particle properties. 

The following HLSL snippet of code calculates the rotation and 
translation matrix used when sampling from the texture atlas. 

float sin;

float cos;

sincos(angle,sin,cos);

float2x2 rotationMatrix = { cos, -sin, sin, cos };     

Input.texCoord = mul(Input.texCoord,rotationMatrix);

Input.texCoord = Input.texCoord*0.25f+Input.texTransform.xy;

3.3.7 Shadows

Most particle system implementations lack shadows because shadows 
would make them to slow. This particle system technique does already 
have all data needed to do shadows so adding shadows the final image 
will only decrease performance a little. Since no actual polygon structure 
exists for the smoke, shadow volumes cannot be used. Therefore, 
shadow mapping was chosen. The two different parts of shadow 
mapping technique are depth comparison and texture projection. 
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Image 17: This image shows the four textures,  
combined in a texture atlas, used as density textures  
for the particles. Their goal was to add high 
frequency details to the smoke. 



Since this smoke will most likely only be applied to the ground, since it's 
for a racing game. The comparison was skipped to simplify the solution. 
Instead, the density texture, in the light direction, were simply projected 
on the ground. The drawback with this method of doing shadows is that 
anything between the light and the smoke will get shadowed as well. But 
since this is not very likely in a racing game, the approximation was 
accepted. 

Because of the used lighting algorithm, the smoke will self shadow with 
realistic soft shadows. This can be seen in Image 32 in Appendix. 

3.3.8 Implementation

The smoke rendering consists of 9 passes. 

Pass 1
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Image 18: This rendering shows the shadows 
from the smoke in the test application. The light  
is located to the upper left. 



The first pass renders the scene depth to a texture. The scene depth is 
stored in screen space in a 32-bit float texture. 

Pass 2

In the second pass, all particles are rendered with the instancing method 
described earlier. This is combined with billboarding, texture atlas and 
the fake sphere rendering method. The camera used is a camera that is 
located at the light position and looking in the light direction. The result 
is saved in a  32-bit float texture, and the following is the data saved for 
each fragment:

R-channel: Distance between the particle and near clip plane. 

G-channel: Distance between the particle and far clip plane.

B-channel: not used

A-channel: Particle density

This in combination with the following blendmodes, BLENDOP_MIN for 
color channels and BLENDOP_ADD for alpha channels results in the 
following data will be stored in the final texture: 

R-channel: Smallest depth (closest position) to the smoke volume.

G-channel: Largest depth (furthest position) to the smoke volume.

B-channel: not used
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Image 19: This image shows 
the texture with the scene 
depth.



A-channel: Smoke density

Pass 3

Same as Pass three but uses the normal view camera when rendering. 
Also, channel B is used to store life. Because of the MIN blend mode, the 
minimum life will be stored for the smoke at each screen position. 

Pass 4,5

These two passes applies separable Gaussian Blur on the rendered 
texture from pass 2. This is done do soften the lighting and shadows. 
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Image 20: This image 
shows the texture with the  
depths and density.  
Rendered from the lights  
perspective.

Image 21: This image 
shows the texture with the  
depths, density and life.  
Rendered with the normal  
view camera.



Pass 6,7

These two passes applies separable Gaussian Blur on the rendered 
texture from pass 3. This is done do soften the lighting and shadows. 

Pass 8

In pass 8, the scene is rendered normally to the screen. This pass can be 
rendered anytime during rendering and it can be split up in any number 
of additional passes. 

Pass 9

Shadows are rendered in this pass. Both from the smoke and from the 
scene. This can of course be separated in a real application. 
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Image 22: This images  
shows the result after  
blurring the texture from 
pass 2.

Image 23: The scene 
rendered with simple light-
mapping.



Pass 10

The final pass is the most important one. It's in this pass that the actual 
rendering of the smoke to the screen happens.  

First, both far and near positions are reconstructed in both world space 
and view space. 

Then, the volume is raytraced and for each sample, the scattering 
contribution is gathered and added to an accumulating shadowing value. 
This will give the resulting shadowing and shading of the smoke. 

The alpha of the smoke is decided upon the life of the particle, the 
density, and the distance to the scene. The distance contribution is 
calculated as in soft particles, it's a simple fade when the volume is to 
close to the scene, to remove any visible intersections. 

A color value for the smoke is sampled from an one dimensional texture, 
using life as the texture coordinate. This enables artist to easily create 
any color range for the system. The ambient term, sampled from a 
cubemap, is finally added to the resulting color. 
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Image 24: Scene with  
projected shadows from both 
the smoke and the scene 
itself.



3.3.9 Particle simulation

The particles were simulated on the CPU as a basic particle system. The 
particles where emitted by an cone shaped emitter.

At spawn, all particles where given a random life-time, a random texture, 
a random speed and a random texture rotation angle.

3.3.10 Performance

Very little optimizations were done but performance was acceptable 
anyway. Following fps were measured on two different hardware:

GPU Resolution Average FPS

NVIDIA GeForce 8800 GT 800x800 85

NVIDIA GeForce 8800 GT 1280x1024 60

NVIDIA GeForce GTX 260 800x800 50

NVIDIA GeForce GTX 260 1280x1024 50

Because of the deferred nature of the algorithm, the amount of smoke 
on the screen doesn't affect the performance as much as in an ordinary 
particle system. 

What could have been optimized more: 

– rewrite shader code in a more optimized way

– use view-space instead of projection space depth

– try to step less times when collecting scattering contribution

– find optimal combination of size and amount of particles
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Image 25: Final scene with  
the smoke rendered. 



– use the bounding box of the particle system instead of a fullscreen 
quad when blurring and rendering the final shader

– render the smoke to a texture smaller than the screen

3.3.11 Problem areas

The smoke rendering method described in this chapter have some 
serious problem areas that prevent an implementation in a real game. 
The two main problems are that dead particles cannot easily fade away 
and the camera is not allowed to be inside the smoke.

When the smoke particles die, they should fade away slowly. Fading the 
density is easy, since it can be multiplied with the life of the particle. But 
the position of the particle cannot be manipulated. There is no way to 
smoothly fade away the particle since it will either write the depth or it 
won't. There is nothing in between. This limitation was the main reason 
for no further development on this algorithm. The limitation makes the 
smoke flicker where it's close to the parts that's fading away. A solution 
not tested in this project, would be to use simply soft particles for the 
particles with low life and therefore are very transparent.
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Image 26: These two images shows how the smoke fades away when 
it dies. There are only half a second between the images. 



No work or research have been put into finding a solution to the 
problem with a camera inside the smoke as can be seen in image 27. 
The algorithm can currently not deal with this situation. But there are 
no known limitations that makes it impossible to adopt the algorithm to 
handle this case in a nice manner. 

Another little limitation with the algorithm has to do with the 
approximation of the smoke volume. Since holes in the volume are 
filled by the approximation, this can give very wrong visual result 
sometimes as seen in Image 28. A solution to this is to divide the smoke 
rendering into many passes. So the smoke in the back is rendered 
separately from the smoke in the front. The drawback is that this would 
be slower and more complex. 
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Image 27: The image on the left shows the smoke 
before moving the camera inside it. The image on 
the right shows how it looks like when standing in 
the middle of the smoke.



This can be concluded in that the algorithm is not robust enough for a 
real implementation. 

3.4 The Simbin implementation

Before the actual implementation into the rendering system that Simbin 
has, an evaluation took place of the tested smoke rendering methods. 
The best candidate were then tested and implemented in the renderer.

3.4.1 Old smoke rendering system

The old way to render smoke in the CUBE renderer was to use a simple 
particle system with emitters at the wheels. The particles where 
textured but this texture was neither rotated nor animated. 

The particles were view-plane aligned on the CPU before rendered 
using either a shader or the fixed-function pipeline. Some particles 
could be lit by a single directional light. Since the particle system didn't 
have any soft particles implementation, it used very high alpha on the 
textures to make them nearly invisible to avoid any artifacts at edges. 
Also, all particles were spawned above the ground as Image 29 shows, 
to avoid the intersection with the ground. This cheat made the smoke 
look less realistic and hard to tweak for the artist, but at the same time 
avoided what could have been very noticeable artifacts.  
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Image 28: Here we can see that the algorithm doesn't  
correctly handle the case when there is empty space between 
the smoke in the front and the smoke in the back. Therefore,  
the smoke in the back will give a dark silhouette.



The effects are loaded as reaction. A reaction could be smoke, or rain 
dust from the wheel. These reactions were stored in a simple data file 
for easy tweaking without recompilation of the source code. 

3.4.2 Evaluation

Soft particles is an easy technique to render smoke with good quality 
and realism. It's stable and work on all modern gaming hardware and 
it's the method most games are using nowdays. 

Mega particles is too unstable and low quality to be used. 

The smoke with volumetric lighting is unfortunately to unstable to be 
used in a real product. There are still to many issues to solve. It's also 
quite demanding on the hardware.

Soft particles were chosen as smoke rendering method because of it's 
proven stability and simplicity.

3.4.3 Problems

The largest problem with the implementation was that the CUBE 
renderer didn't have any built in support for rendering to a texture. The 
engine did have a similar functionality but it was only developed for 
rendering sprites to a texture. A more general solution would have been 
good. Most engines today rely heavily on this functionality shadows, 
lighting and post-process effects. 

Some time had to be spent on implementing a general render to 
texture functionality into the CUBE renderer. 

Since the whole engine and game is undocumented, expect for source 
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Image 29: The particle sprites ( gray  
rectangles) are carefully placed 
hovering above the ground ( black line 
) to avoid any intersection because  
the lack of a soft particles  
implementation. 



code comments, a lot of time had to be spent on searching, 
understanding and testing the code. 

Much code in the the renderer were no longer used. To understand the 
real pipeline, this dead code were removed as the example below 
shows. In the example, the case that never does any work is 
commented out, and an assertion were added instead, to verify that 
this code never would be used. 

assert(pScene->mParticleSystem.Begin() == NULL);

/* 

if (pView->Flags() & CUBEVIEW_RENDERPARTICLES)

{

cubeParticleSystem *ps = pScene->mParticleSystem.Begin();

while (ps) 

{

ps->Render (pScene, pView);

ps = pScene->mParticleSystem.Next();

}

}

*/

3.4.4 Result

The resulting implementation seen in Image 30 worked well and made 
it possible to increase the alpha of particles and make them more 
visible without ugly intersection artifacts.

The depth texture can in the future be the used for other post-
processes like Screen Space Ambient Occlusion, Depth Of Field, Motion 
Blur, and Soft Shadows. 

Only the render to texture functionality were borrowed from the test 
application. 
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Not much difference can be seen in the game after the implementation 
of soft particles. But this was expected since this addition should be 
treated as a tool for game designers and artist. They should be able to 
improve the quality of the smoke in the game, because they can now 
allow intersections and increased alpha. Without the risk of visual 
artifacts. The soft particles implementation isn't restricted to smoke, 
but can also enhance other particle effects, like for example water and 
dirt splashes. 

As can be seen in Table 1, the measured fps drop with soft particles 
instead of normal hard particles were only 5-10%. One reason the 
difference is so small, is that particles are rarely on the scene. The 
bottle-head in the pipeline could not have been in the pixel shader 
stage. The game is most likely CPU bound on the test setup. Even if the 
performance drop is slim, two optimization methods were tested. 

The first one utilizes the prepass which renders the scene depth. This 
pass also writes to the z-buffer (must do so) and this can later be 
utilized when rendering the scene normally. Since the correct depth is 
already written to the z-buffer, the second pass can use the EQUAL z-
comparator, and skip writing to the z-buffer. This could speed up the 
rendering if there is a lot of over-draw in the scene and the geometry 
uses complex shaders. But this optimization strategy didn't improve 
performance accordingly to measurements. 

The second optimization strategy was to render the particles to an off 
screen texture with size ¼ of the full screen. If the pipeline were fillrate-
limited, this would improve performance a lot. Unfortunately, the 
implementation only slowed down rendering, so the application was 
not fill-rate limited. 
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Image 30: The image on the right shows the rendered linear depth of the scene.  
The image on the left shows the same scene rendered with soft particles. 



Method Setup Min FPS Max FPS Average FPS

Hard Particles Fullscreen, 
1280x1024, Max 
quality

102 416 212

Soft Particles, no 
optimizations

Fullscreen, 
1280x1024, Max 
quality

104 384 194

Soft Particles, utilize 
prepass z-buffer

Fullscreen, 
1280x1024, Max 
quality

105 376 190

Soft Particles, render 
particles to ¼ of 
fullscreen sized 
texture

Fullscreen, 
1280x1024, Max 
quality

104 264 166

Table 1: This table shows the four methods of rendering particles that  
were tested and measured in the CUBE renderer.

3.5 Tool usage

This work could not have been done without the tools used. Especially 
RenderMonkey provided a good environment for fast prototyping of the 
shaders. Unfortunately, the tool is full of of bugs which slowed down 
development. There is so far no best option of IDE for shader 
development. Most probably since it's a new field of software 
engineering. Developing a high-quality commercial IDE for shader 
development might be a good business opportunity for a company. 

One important feature lacking in RenderMonkey is that when using 
different cameras, they share view and projection matrix. So only one 
camera matrix can be used at a time. When doing for example shadow 
mapping, both current camera matrix and light camera matrix is needed 
in the same shader. This isn't possible without a workaround in 
RenderMonkey. To solve this, an additional pass was added that 
rendered the camera matrix to a 32-bit float texture. When this matrix 
had to be used, it was sampled from this texture. The solution is of 
course slow, but made it possible to develop without these restrictions of 
one camera only. 

RenderMonkey is also very restricted in what data can be sent to the 
shader. No instancing is possible, and no user defined values per vertex. 

Some bugs in RenderMonkey worth to mention are the following:

– View direction is wrong, it's not the same as:

- normalize(viewPosition)
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– The FX Exporter exports render states with mistyped names

– Undo doesn't always work

But even if it misses the mentioned features and have the bugs above, 
it's a very good IDE for shader development and prototyping. 

The Microsoft DirectX10 SDK served as a good tutorial of how DirectX9 
and DirectX10 should be best used. Some code from the SDK was reused 
in the test application in this decreased development time.

For implementation in the CUBE renderer, PIX was an invaluable tool that 
helped debugging most issues. The simplicity to debug single pixels, 
shaders and render targets was very useful. Without the tool, the 
implementation would have been much slower, since a debugging 
environment would have too be developed. The only thing PIX couldn't 
debug was timing issues between CPU and GPU. The reason is that PIX is 
rendering slower than the stand alone application, so a timing issue 
might disappear. During development of the Simbin implementation, one 
bug was only visible in the application, but not when run through PIX.
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4 Conclusion
Three different methods to render smoke were evaluated. Soft particles 
proved to be a reliable, visually appealing method to render smoke. 
Mega particles is both hard for artist to control and suffers from a 
shower door effect. The smoke with volumetric lighting method wasn't 
developed to completion. Therefore, it was unstable and had visual 
artifacts. If more work were put in this method, it could be a good 
candidate for real use. The results of the three methods tested 
motivated the choice to use soft particles in the CUBE renderer. 

The implementation of soft particles were quite easy. Although a flexible 
way of rendering to a texture were missing and had to be implemented 
as well. The result were a good looking smoke without any visible 
artifacts. Now, artist and game designers can use any alpha or sprites 
they want, without need to bother about intersections. 
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Image 31: The result of the smoke with  
volumetric lighting.



4.1 Future work

The smoke with volumetric lighting can probably be extended a lot with 
future work. The most stable solution might be a combination with soft 
particles. But this has to be tested and evaluated. 

When taking samples inside the volume. Not much time have been spent 
on understanding the impact of the number of samples or where they 
are taken. It might be enough to take much fewer samples, if they are 
carefully positioned. 

With the current limitations of smoke with volumetric lighting, it cannot 
be used in racing games. But maybe in other games or visualizations, for 
example volumetric clouds. 
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6 Appendix

6.1 Passes when rendering smoke with volumetric lighting

Interactive Real-time Smoke Rendering 52



6.2 Soft self-shadowing 
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Image 32: These three images shows how 
the large ball realistically shadows the 
small one when it moves. 



6.3 VPOS 

Starting with DirectX Pixel Shader Model 3.0 there exist a new input type 
called VPOS. It's the current pixels position on the screen and it's 
automatically generated. This can be useful when sampling from a 
previously rendered texture when rendering an arbitrarily shaped mesh 
to the screen. To do this, we need uv-coordinates that represents where 
to sample on the texture. These coordinates can be gained by simply 
dividing VPOS with the screen dimensions. 

When working with older hardware, that doesn't support shader model 
3.0, there is a need to manually create the VPOS in the vertex shader and 
pass it to the fragment shader as a TEXCOORD. This is the way to do so 
( including the scaling to uv-range which manually has to be done for 
VPOS if you're using it). 

Vertex Shader:

float4x4 matWorldViewProjection;

float2 fInverseViewportDimensions;

struct VS_INPUT 

{

   float4 Position : POSITION0;

};

struct VS_OUTPUT 

{

   float4 Position : POSITION0;

   float4 calculatedVPos : TEXCOORD0;

};

float4 ConvertToVPos( float4 p )

{

   return float4( 0.5*( float2(p.x + p.w, p.w - p.y) + 
p.w*fInverseViewportDimensions.xy), p.zw);

}

VS_OUTPUT vs_main( VS_INPUT Input )

{

   VS_OUTPUT Output;

   Output.Position = mul( Input.Position, matWorldViewProjection );

   Output.calculatedVPos = ConvertToVPos(Output.Position);

   return( Output );

}

Pixel Shader:

float4 ps_main(VS_OUTPUT  Input) : COLOR0
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{   

   Input.calculatedVPos /= Input.calculatedVPos.w;

   return float4(Input.calculatedVPos.xy,0,1); // test render it to the screen

}

Image 33 shows an elephant model rendered with the shader above. As 
can be seen, the color (red and green channels) correctly represents the 
uv-coordinates for a fullscreen quad. Since 0,0,0 = black, 1,0,0 = red, 
0,1,0 = green, 1, 1,0 = yellow. 

6.4 Reference images

This is a part of the collection of reference images of thick white smoke 
collected before starting the work. All these images are creative common 
licensed, and allowed to be used commercially. 
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Image 33: This image 
shows an elephant model  
rendered using the manual  
vPos shader. As can be 
seen, the color (red and 
green channels) correctly  
represents the uv-
coordinates for a fullscreen 
quad. Since 0,0,0 = black,  
1,0,0 = red, 0,1,0 = green,  
1, 1,0 = yellow.



http://www.flickr.com/photos/racecarphotos/2870172056/

http://www.flickr.com/photos/ariander/3642486348/

http://www.flickr.com/photos/ericcastro/1573080019/
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http://www.flickr.com/photos/ariander/3642486348/


http://www.flickr.com/photos/iraxmas/1425419766/

6.5 Work in progress images

A collection of images taken during development, showing the progress.
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Image 34: One of the first images of the rendering of smoke 
with volumetric lighting. This image shows how the lighting is  
approximated by the cheating version of multiple scattering.  
This is before any noise or texturing is added. 

http://www.flickr.com/photos/iraxmas/1425419766/
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Image 36: This image shows the lighting of the smoke, when 
combining with density texture and noise.

Image 35: This image demonstrate the first tests with  
multiple particles. As seen, there are still many artifacts that  
later in the development process were removed.
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Image 37: One of the first tests with  
objects intersecting the smoke. Note that  
there is a small vase inside the smoke.

Image 38: Here shadows are tested. Both the scene and 
the smoke casts shadows. The smoke shadows are simply  
projected while the scene is using real exponential  
shadow mapping. 
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Image 39: First test of the smoke in the test  
application. Here, it's slowly rising as very  
thick white smoke.

Image 40: This image shows that the smoke can be simulated 
realistically. Here it's spawned from a moving emitter that moves  
around in a circle. 



6.6 Documentation of CUBE Renderer

The following is the documented behavior of the renderer, consisting of 
information gained from testing. It was used as a reference when 
implementing the final solution. There are three important phases in a 
game. The init sequence and the game loop which consist of an update 
sequence and a rendering sequence. 

Init sequence

Game::Init(..) - might multithread the game, otherwise just runs InitProc

Game::InitProc(..) - initializes all components of the game, including the  
gSpecialFX component

SpecialFX::init() - reads all the reactions from file (as settings), reads 
some reactions from terrain file,  loads the reactions

Reaction::Load(..) - initializes the reaction and creates a particle system 
by calling a factory method

cubeScene::CreateParticleSystem(..) - creates a new particle system, and 
adds it's particles to the correct array

cubeParticleSystem::Initialize(..)  - calls either initInternalParticle() or  
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Image 41: Final render of the smoke, this time with the projected 
shadows from the smoke onto the ground.



InitGMTParticle()

cubeParticleSystem::InitInternalParticle(data) - inits the particle systems 

Render sequence

Game::Dyn()

Render::Dyn() - handles dev. shortcut keys , render the scene

cubeScene::Render(..) - updates the lights, perform animations, renders  
the scene with the different viewports (cubeViews)

cubeView::Render(...) - render shadow maps, calls render objects

cubeDirectX::RenderObjects(...) - sets cam. parameters as (view, fov,  
clipplanes), sorts in buckets  (called phases by cube) and renders them all

Update sequence

Game::Dyn()

SpecialFX:Dyn() - updates the special effects, including the reactions

Reaction::Continue(float* currentVehicleCollisionAmount) – called for each 
reaction, uses a switch to selected correct behaviour

Reaction::Continue...(...)  - specific for each type of reaction (hardcoded 
in specialfx.cpp), updates position of  the particles
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