
Interactive Real-Time Smoke Rendering

ROBERT LARSSON

Master's Thesis
Computer Science and Engineering Programme

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering
Göteborg 2010

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a
company), acknowledge the third party about this agreement. If the Author has signed a copyright
agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Interactive Real-Time Smoke Rendering

Robert Larsson

© Robert Larsson, April 2010.

Examiner: Ulf Assarsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

The cover shows the final result of the thick smoke implementation discussed in chapter 3.3.

Department of Computer Science and Engineering

Göteborg, Sweden April 2010.

Abstract
There are many different approaches to real-time rendering of
smoke. In this work, three different methods were tested and
evaluated. Soft particles proved to be a reliable method to
render smoke as particles doesn't have visible intersections
with the scene. Smoke with volumetric lighting resulted in
thick white convincing smoke, but it's too unstable to be used
commercially. The soft particles solution were finally
successfully implemented into the PC graphics engine at the
game development company SimBin.

Interactive Real-time Smoke Rendering 3

Content
1 Introduction..7

1.1 Background...7

1.1.1 SimBin ...7

1.2 Goal...8

1.2.1 Limitations...8

1.3 Method...8

1.3.1 Software development process..8

1.3.2 Software architecture..9

1.3.3 NVIDIA FxComposer 2.0..9

1.3.4 RenderMonkey 1.6..10

1.3.5 Microsoft DirectX9 SDK...11

1.3.6 Microsoft Visual Studio...11

1.3.7 PIX..11

2 Theory...12

2.1 Rendering pipeline..12

2.2 Shaders..13

2.3 Instancing..14

2.4 Particle systems...14

2.5 Billboarding...15

2.6 Fluid simulation...16

2.7 Soft particles...17

2.8 Mega Particles...18

2.9 Lighting theory..19

2.10 Deferred Rendering...19

Interactive Real-time Smoke Rendering 4

2.11 Position reconstruction...20

2.12 Texture atlas..21

2.13 Ray-sphere intersection..22

2.14 Gaussian blur..23

3 Results and Discussion..24

3.1 Soft Particles...24

3.2 Mega particles...25

3.3 Thick smoke with volumetric lighting...27

3.3.1 Test application...28

3.3.2 Fake rendering a sphere..29

3.3.3 Billboarding shader...30

3.3.4 Position reconstruction...31

3.3.5 Ambient lighting..32

3.3.6 Texturing..33

3.3.7 Shadows..34

3.3.8 Implementation...35

3.3.9 Particle simulation...40

3.3.10 Performance..40

3.3.11 Problem areas...41

3.4 The Simbin implementation..43

3.4.1 Old smoke rendering system...43

3.4.2 Evaluation..44

3.4.3 Problems...44

3.4.4 Result...45

3.5 Tool usage...47

4 Conclusion..49

4.1 Future work...50

Interactive Real-time Smoke Rendering 5

5 References..51

6 Appendix...52

6.1 Passes when rendering smoke with volumetric lighting....................................52

6.2 Soft self-shadowing ..53

6.3 VPOS ...54

6.4 Reference images..55

6.5 Work in progress images...57

6.6 Documentation of CUBE Renderer...61

Interactive Real-time Smoke Rendering 6

1 Introduction
This work will compare different methods to render smoke realistic in
games and implement the most appropriate method in the engine
Simbin uses for PC racing games. The report assumpt that the reader is
well knowledged in real-time rendering methods and vocabulary.

1.1 Background

In the video game business, there is an ever going strive to get better
graphics in the games. Realistic rendering of smoke have recently got
more attention, but so far, no good solution has been found. Smoke is an
important visual effect in racing games since they are one of the few
dynamic parts of the game. Cars, people and particle effects are what
usually is dynamic in a racing games. Most games focus on the cars, and
only implements simple solutions for people and special effects like
smoke. But to get a visually realistic result, all parts of the scene must be
of the same high quality. Therefore, it's important to render smoke and
the other special effects in a convincing way.

Smoke is a very hard effect to render. It's made out of many tiny
particles, which interact which the light in a complex way. With the
advance of hardware, lightening calculations have recently become more
and more advanced. But few have tried to improve particle rendering by
using these more advanced lighting techniques.

1.1.1 SimBin

SimBin is a
Swedish
developer and
publisher of
racing games.
They do
development for
both PC and
XBOX platform. They have release titles as “Race 07 – The WTCC Game”
and “GTR Evolution”.

The renderer they use is a bought 3D engine called gMotor 2.0. This
engine has been only little improved over the last years. And it comes
with neither documentation nor support. The engine will be referenced
as gMotor, CUBE engine or Simbin renderer throughout the report.

Interactive Real-time Smoke Rendering 7

Image 1: The logo of the game development company
SimBin.

1.2 Goal

These were the goals of the project:

• Perform a study of current research in the smoke rendering field

• Develop a simple separate test application

• Combine the results into the best solution for today's hardware and
rendering pipelines

• Implement the solution in the PC renderer at Simbin

1.2.1 Limitations

The following limitations constrained the project:

• No work will be done in refactoring current code that SimBin has.

• No implementation for XBOX will be done.

• The solution proposed should be targeted for a racing game. So it
might not be appropriate for any other type of games.

• The particle system developed should only be able to simulate and
render smoke.

1.3 Method
For the different parts of the projects, different methods were used. For
research, a study of research papers and relevant books was performed.
The combined result were summarized into the theory chapter of this
report and proves as a basement for the discussion and implementation.

For application and effect development, a software development process
were used. The final smoke effect and it's shaders were developed using
the tools NVIDIA FxComposer 2.0 and AMD RenderMonkey 1.6. The
development of the test application and the Simbin integration were
done in Microsoft Visual Studio, and debugging was done with PIX.

1.3.1 Software development process

Even if this project was a one man project, a software development
process were used to structure the work. The software development
process used in this project was a Scrum influenced model. At the
beginning, a development plan were done containing the overall goals of
the project. The work was divided into small tasks with priorities. For
each month, the most important task, based on project value, were

Interactive Real-time Smoke Rendering 8

selected and worked on. The work load and priorities were adjusted for
each month.

1.3.2 Software architecture

The project consists of a test application, mostly used for rapid testing
and evaluation of the different rendering, the particle system for
rendering smoke, and an adapter to connect the particle system to the
SimBin game code. Depending on chosen solution, the final
implementation with the CUBE renderer might look different then what
this architecture shows.

1.3.3 NVIDIA FxComposer 2.0

FxComposer is an IDE for developing effects and shaders in HLSL and
CgFx. It focuses more on effect development than on single shaders. It's
a useful tool for evaluating, developing, debugging, testing and
optimizing shaders. The built-in support for handling DirectX Effect files
makes it the first hand choice for many DirectX shader developers. The
IDE comes with a large library of pre-made shaders.

This tool was only used for compiling and correcting the DirectX Effect
files.

Interactive Real-time Smoke Rendering 9

Image 2: The planned architecture for the system developed.

1.3.4 RenderMonkey 1.6

RenderMonkey is an IDE for developing shaders in GLSL and HLSL. It's a
useful tool for evaluating, developing, debugging, testing and optimizing
shaders. The tool simplify render target creation and can easily be used
to rapidly test new shader ideas. The drawback is lack of good DirectX
Effect support. This IDE also comes with a large library of premade
shaders.

This tool was used before FxComposer to test out shader ideas rapidly.
It's faster to develop in RenderMonkey because it has better support for
render targets.

Interactive Real-time Smoke Rendering 10

Image 3: This is what it looks like to develop shaders in FxComposer.

1.3.5 Microsoft DirectX9 SDK

The development in this work used the DirectX API for accelerated 3D
graphics and therefore, the DirectX9 SKD was used. The DirectX9 SDK
includes demos, library files, and header files for compiling projects using
DirectX9. The test application is based on the test suite that is included in
the SDK.

1.3.6 Microsoft Visual Studio

The Microsoft Visual Studio was used as IDE for developing the C++ code.
It's one of the most popular tools for developing products for the
Microsoft platform. And the example projects in the DirectX9 SDK
includes Visual Studio project files to simplify for users.

1.3.7 PIX

PIX is a tool included in the DirectX SDK for debugging the rendering
pipeline of a DirectX application. The main feature is the possibility to
debug single pixels on the screen (or on render targets) and track down
errors in the shaders by stepping trough the code of them.

Interactive Real-time Smoke Rendering 11

Image 4: An example workspace for developing shaders in
RenderMonkey.

2 Theory
The following chapters introduce the theory needed to understand the
discussion and results. A good knowledge in computer graphics,
computer programming and linear algebra is recommended.

2.1 Rendering pipeline

The graphics rendering pipeline consists of three major stages,
application, geometry and rasterization. The goal with the pipeline is to
convert a 3D scene into a 2D image.

 In the application stage, the application culls and send the models that

Interactive Real-time Smoke Rendering 12

Image 5: This image shows the different
transformations needed for the geometry
throughout the pipeline.

should be rendered to the graphics card. It also decides what render
states to use, shaders and textures. The application stage has the
responsibility to set up the matrices used.

In the geometry stage , the vertices are transformed from model space
into clip space. In this space, the triangles are clipped against the camera
frustum.

The rasterization stage renders the triangles as pixels to the screen.

Since it's a pipeline, the stage which is the bottleneck has the greatest
negative impact on the throughput. And therefore, this bottleneck
should be main focus of optimization.

2.2 Shaders

Advances in graphics hardware have made it possible for graphic
programmers' to program certain parts of the rendering pipeline. These
programmable parts of the pipeline are called shaders. There are
currently three types, vertex shaders, geometry shaders and pixel
shaders. Pixel shaders are sometimes called fragment shaders, for
example in OpenGL. The high-level shading language in DirectX is HLSL
and in OpenGL it's GLSL. NVIDIA also has their own shading language
CgFx, which is very similar to HLSL in syntax but works in both DirectX
and OpenGL.

Vertex Shader

Has all the vertices as input and has as the goal to transform them into
cull space. Does also often do animation, lighting and more.

The vertex shader is a part of the geometry stage of the rendering
pipeline.

Geometry Shader

Has vertices as input and can output more vertices if needed.

The geometry shader is a part of the geometry stage of the rendering
pipeline.

Pixel Shader

Does computations for each pixel of the geometry rendered. Will decide
exactly what color is sent to the blending stage. Since the pixel shader is
executed for each pixel, it will the the shader that is (nearly always)
executed the most. And should therefore be optimized the most.

The pixel shader is a part of the rasterization stage of the rendering

Interactive Real-time Smoke Rendering 13

pipeline.

2.3 Instancing

Geometry instancing is a method to decrease bandwidth usage when
rendering many copies of the same geometry. This is done by reducing
the overhead of drawing multiple copies of the same vertex buffer. In
DirectX this can be setup by using different streams (at least two) when
rendering. Each stream can contain data as position, color, uv-
coordinates and more. By setting different frequencies on these streams,
one or more streams can be reuse many times and therefore saving
memory and also increase performance.

2.4 Particle systems

Particle systems have been used for special effects since the dawn of
computer graphics. They are often used to render smoke, fire, explosion
and more. The main reason to use visualize these effects with particle
systems is that these types of effects originally consists of millions of
small particles in real life. In a particle system, these small particles are
approximated by larger particles following some basic rules. The more
particles used, the better result. But the more particles, the slower it is.

Main components of a particle system are, emitters, particles and forces.
The emitter decides how creation of particles should be done. For
example in which angle, quantity, speed, size and distribution. The
particle should be possible to be rendered to the screen. Often as a
billboarded quad. Sometimes, forces are used to affect the particle
system, for example gravity or wind.

When doing a particle system we must decide what type of geometry to
send to the GPU. In other words, what vertices. It’s also important to
decide where and when to transform the geometry to screen space for
rasterization.

It have been standard to use quads (sometimes just single triangles) as
representation for particles. These quads are usually billboarded to the
screen which requires additional work. There also exist a technique
called point sprites, in both DirectX and OpenGL, that allows us to render
a simple billboarded image by just sending a single vertex for each
particle to the GPU, compared to at least four when doing quads (and
maybe also indices). This sprite will be scaled by the distance accordingly
to a formula that can be tweaked. It’s easy to translate it (it’s the position
of the vertex itself) but it’s not so easy to rotate it. Rotation would need a
special vertex or fragment shader that does the rotation manually.

Sprites can reduce the bandwidth usage a lot, at the cost of increased

Interactive Real-time Smoke Rendering 14

complexity in the shader. Quads on the other hand allows more
possibilities, for example stretching. If sprites is faster than quads
depends on hardware and where the bottleneck is in the rendering
pipeline.

2.5 Billboarding

Billboarding [13] is the technique to rotate a quad to align to the screen.
The technique have been popular for a long time in computer games to
fake complex geometry. For example, the computer game Doom used
billboarded animated sprites as enemy characters. Today, billboarding
are used to fake distance geometry by a technique called impostors or
used in particle systems.

Billboards are often either viewplane-aligned or viewpoint-oriented. As
Image 6 shows, there is a difference in facing of the billboard between
the two alignments. The calculation needed to billboard a quad can
either be done on the CPU or on the GPU in a vertex shader.

Viewplane-aligned billboards

One technique [14] to do billboarding is to remove the rotation and
scaling from the view matrix. This requires that the vertices of the quad
are already positioned correctly in view space to be projected. Rotation
and scaling can be removed by setting the upper left 3x3 in the
projection matrix to the identity matrix.

Another approach to viewplane-aligne billboards is to do the positioning
of thee vertices in a vertex shader. The goal with the shader will be to
position each corner vertex for the quad so they form a viewplane

Interactive Real-time Smoke Rendering 15

Image 6: Viewplane aligned billboards on the left.
Viewpoint-oriented billboards on the right. The billboards
on the right will rotate when camera is moved forward,
but the left ones will not.

aligned quad. Since the world space vertex position is calculated in the
shader, the quad doesn't need any position for the vertices. It only needs
texture coordinates and the center position of the quad. The texture
coordinates will be used to identify the four corners of the billboarded
quad and offset them correctly from the center position. In this example,
the following texture coordinates are used for the four corners:

(0,0) (0,1)

(1,0) (1,1)

From the view matrix, we can get the up and right vector of the camera
in world space. Combining this with the texture coordinates and the size
of the quad is enough to do billboarding.

The following code snippet shows how it can be done in a HLSL vertex
shader:

VS_OUTPUT vs_main(VS_INPUT Input)

{

 VS_OUTPUT Output;

 float3 rightVector = normalize(float3(matView[0][0], matView[1][0],
matView[2][0]));

 float3 upVector = normalize(float3(matView[0][1], matView[1][1],
matView[2][1]));

 float2 offset = (Input.texCoord.xy - 0.5f)*2; // scale from 0..1 to -1..1

 float4 position = float4(billboardCenterPosition +
billboardSize*(offset.x*rightVector + offset.y*upVector),1);

 // position is in world space

 Output.Position = mul(position, matWorldViewProjection);

 return(Output);

}

2.6 Fluid simulation

For realistic simulation and rendering of effects like smoke or water, a
fluid simulation and rendering approach is needed. There are currently
two popular methods for this:

• Simulate the fluid on the CPU and send the result as particles to the
GPU for rendering as billboards. This is often called a particle system.
The technique has been around since the dawn of computer graphics.

• Simulate the fluid on the GPU and render the result into textures. This
will then be rendered by doing volume ray casting (or ray marching)
on the GPU. This technique is new and rather unexplored, and there
are few real-life implementations. The result can be very realistic but
slow.

Interactive Real-time Smoke Rendering 16

Technique one burdens both CPU, bandwidth and GPU. Although in
modern solutions, it’s often the bandwidth that’s the bottleneck. The
GPU based technique only burdens the GPU (but a lot).

2.7 Soft particles

The aim with soft particles is to remove the ugly artifact that appears
when the particle quad intersects the scene. There are a lot of different
approaches to solve this, some more complicated than others. The
simplest formula for soft particles is to fade the particle if it’s getting to
close to the scene. To do this, the scene without particles has to be
rendered first and the depth saved in a texture. When drawing the
particles, the depth of the particle will be compared to the scene depth.
The alpha should be increased by a smooth fade by this depth difference.
The formula below in HLSL is the simplest possible for soft particles, and
works very well. Scene_depth is the sampled depth (in view space) of the
scene in the direction of the current pixel. Particle_depth is the depth (in
view space) of the current particle pixel. Scale is used to control the
“softness” of the intersection between particles and scene.

fade = saturate((scene_depth – particle_depth) * scale);

NVIDIA [1] proposes a method that the following fade should be used
instead of the linear one described above, to make the fade even
smoother.

float Output = 0.5*pow(saturate(2*((Input > 0.5) ? 1-Input : Input)),
ContrastPower);

Interactive Real-time Smoke Rendering 17

Image 7: This image shows an example of fluid simulated and rendered
realistically on the GPU.

Output = (Input > 0.5) ? 1-Output : Output;

Umenhoffer [2] proposes a method called spherical billboards to deal
with these problems. In this method, the volume is approximated by a
sphere. This method also deals with the near clip-plane problem that
particles will instantly disappear if they get to close to the camera.

There is also an idea [3] that the alpha channel can be used to represent
the density of the particles. Although this method has the drawback that
the textures might need to be redone by the artists.

The method by Microsoft [4] uses a combination of spherical billboards
and a texture representation of the volume. But instead of using the
alpha channel as a simple texture, they ray march the sphere and sample
the density and volume from a 3D noise texture. The result can be seen
in Image 8.

2.8 Mega Particles

Instead of rendering textured billboards in a particle system, a technique
called “Mega Particles” [5] render spheres to an off-screen texture. This
texture is then blurred and randomly displaced using a fractal cube. The
final result is blended into the scene, taking depth into account as with
soft particles. The result is a volumetric cloud that is lit by lighting and
look volumetric. The problem is that this technique suffers from the
shower-door effect which makes it annoying to view and use in practice.
It’s also harder for artist to control the final look. Also, going inside the

Interactive Real-time Smoke Rendering 18

Image 8: This screenshot shows how the volumetric soft
particles look like in the DirectX10 SDK.

cloud requires special treatment not mentioned in the slides.

2.9 Lighting theory

The very common Phong Lighting model for real-time rendering divides
the material lighting equation into diffuse, specular and ambient
contributions. These three properties have worked well for solid
materials, but they does not correctly approximate the lighting
interaction with translucent materials. For example smoke requires a
more complex lighting formula that includes the light scattering that
happens inside the smoke.

When lighting is scattering many times it's called multi scattering. Multi
scattering [15] is the diffuse term in the Phong Lighting, but can also be
calculated using the Mie scattering theory. Mie scattering can be
approximated with the Henyey-Greenstein phase function [16] seen in
equation 1.

phg=
1
2

1−g2

1−2gcos g 2
3
2
 Equation 1

2.10 Deferred Rendering

This is a lighting rendering technique [6] [7] [8] that lately has increased
a lot in popularity. The normal way of shading is to perform the lighting
calculations on a fragment when it is rasterized to the screen. This is
often good but requires a lot of calculations if there are many lights. And
the bad thing is that this fragment might later on be overwritten by some
other fragment so the calculations might be a waste.

In deferred lighting (or deferred shading, or deferred rendering), you
save the information about the fragment that is necessary to perform
the shading (lighting) by rendering them to textures instead of doing the
actual lighting calculation. When all geometry is rendered, the lighting
will now be calculated only once per pixel on the screen. So no
calculations will be wasted. This can perhaps be seen as a lazy evaluator.

The information saved per fragment is often:

• position (or only depth)

• albedo (the diffuse texture)

• normal

• specular

Interactive Real-time Smoke Rendering 19

When all geometry has been rendered and it’s time to perform the
lighting, the lights needs to be represented as geometry when sent to
rasterization. This geometry should fit the volume reached by the light. A
smaller volume is faster to render. Point lights can be drawn either as
spheres or just square billboards. Directional lights should be drawn as a
full screen rectangle. And spotlights will be cones. Note that this shading
technique allows for lights shaped in any form, not just these traditional
ones. And sometimes, stenciling can be used to avoid unnecessary
shading calculations.

The big reason for using deferred rendering is how well it scales with
more lights. Another reason that it has increased in popularity lately is
how nice it works with recent post-process effects like Screen Space
Ambient Occlusion (SSAO) and Depth of Field (DOF).

The problem areas with deferred lighting are transparent objects and
multisampling. If the original scene didn’t used per-pixel lighting (but
instead maybe vertex lightning) on the whole scene then the deferred
rendering might be slower than traditional rendering.

2.11 Position reconstruction

There are many occasions when the fragment position in world space
needs to be reconstructed from a texture holding the scene depth (depth
texture). One example of use is in deferred rendering when trying to
decrease memory usage by not saving the position but instead only the
depth. This will result in one channel of data, instead of three channels
needed when saving the whole position.

There are different ways to save the depth. The most popular are view
space and screen space. Saving depth in view space instead of screen
space gives two advantages. It's faster, and it gives better precision
because it's linear in view space.

This is how screen space depth can be rendered in HLSL:

struct VS_OUTPUT

{

 float4 Pos: POSITION;

 float4 posInProjectedSpace: TEXCOORD0;

};

// vertex shader

VS_OUTPUT vs_main(float4 Pos: POSITION)

{

 VS_OUTPUT Out = (VS_OUTPUT) 0;

 Out.Pos = mul(Pos,matWorldViewProjection);

Interactive Real-time Smoke Rendering 20

 Out.posInProjectedSpace = Out.Pos;

 return Out;

}

// pixel shader

float4 ps_main(VS_OUTPUT Input) : COLOR

{

 float depth = Input.posInProjectedSpace.z / Input.posInProjectedSpace.w;

 return depth;

}

The HLSL pixel shader below shows how the position can be
reconstructed from the depth map stored with the code above. Although
this is one of the slowest ways of doing position reconstruction since it
requires a matrix multiplication.

float4 ps_main(float2 vPos : VPOS;) : COLOR0

{

 float depth = tex2D(depthTexture,vPos*fInverseViewportDimensions +
fInverseViewportDimensions*0.5).r;

 // scale it to -1..1 (screen coordinates)

 float2 projectedXY = vPos*fInverseViewportDimensions*2-1;

 projectedXY.y = -projectedXY.y;

 // create the position in screen space

 float4 pos = float4(projectedXY,depth,1);

 // transform position into world space by multiplication with the inverse
view projection matrix

 pos = mul(pos,matViewProjectionInverse);

 // make it homogeneous

 pos /= pos.w; // result will be (x,y,z,1) in world space

 return pos; // for now, just render it out

}

To reconstruct depth from view space, a ray from the camera position to
the frustum far plane is needed. For a full screen quad, this ray can be
precalculated for the four corners and passed to the shader. This is how
the computer game Crysis did it [10] . But for arbitrary geometry, as
needed in deferred rendering, the ray must be calculated in the shaders
[9] .

2.12 Texture atlas

Texture atlas [11] [12] is a technique to group smaller textures into a
larger texture. This decreases the number of state switches a renderer
needs to do and therefore often increases performance. Texture atlases
have been used for a long time in the video game industry for sprite
animations. When using texture atlases, the uv-coordinates of the

Interactive Real-time Smoke Rendering 21

models have to be changed so the original 0..1 map to the texture tiles in
the atlas. Grouping of textures can be done manually by texture artists or
with tools. The texture coordinate system can be changed to map the
new texture in a tool, or in the shader at run-time.

There are some limitations with using texture atlases compared to
normal textures. First of all, all texture coordinates must initially be
within 0..1 range. So for example, no “free” tiling can be used. The other
problem is bleeding between tiles in the atlas when doing filtering, for
example when using mipmaps.

2.13 Ray-sphere intersection

The intersection test [13] between a ray and a sphere is useful in
raytracing, physics, picking and more. The test has three solutions, no
intersection, one intersection, or two intersections.

The ray can be defined as

x(t) = a + tk

and the sphere as

(x – c) (x – c) = r^2

where c is the center of the sphere and r is the radius.

It's simple to calculate the algebraic solution. But for better performance,
a little bit of reorganization needs to be done to only perform squaring
when actually needed. The result is the pseudo code below. A small bias,
SMALL_BIAS, is needed to deal with inaccuracies in the calculations. This
also results in that the solution with only one intersection point is
removed. Instead, an intersection is always in two points. In the pseudo
code, nearT and farT is the t value for the two intersections.

delta = a – c

A = k dot k

B = 2 (delta dot k)

C = delta dot delta – r^2

disc = (B^2 – 4AC)

if disc < SMALL_BIAS

 no hit

else

 hit

 sqrtDisc = square(disc)

 nearT = (- B - sqrtDisc) / (2A)

 farT = (- B + sqrtDisc) / (2A)

Interactive Real-time Smoke Rendering 22

This is the HLSL code for the same algorithm. It's taken from the Soft
Particle example in the DirectX10 SDK.

#define DIST_BIAS 0.01

bool RaySphereIntersect(float3 rO, float3 rD, float3 sO, float sR, out float
tnear, out float tfar)

{

 float3 delta = rO - sO;

 float A = dot(rD, rD);

 float B = 2*dot(delta, rD);

 float C = dot(delta, delta) - sR*sR;

 float disc = (B*B - 4.0*A*C);

 if(disc < DIST_BIAS)

 {

 return false;

 }

 else

 {

 float sqrtDisc = sqrt(disc);

 tnear = (-B - sqrtDisc) / (2*A);

 tfar = (-B + sqrtDisc) / (2*A);

 return true;

 }

}

2.14 Gaussian blur

There are many different filters to blur an image and one of the more
popular ones are the Gaussian blur filter. It's based on the Gaussian
Function, a bell-shaped curve function. The Gaussian blur filter does
blurring by working as a low-pass filter, removing all high-frequencies in
the image.

When applying the Gaussian function as a blur filter on an regular 2D
image, it has to be applied in both dimensions of the image. By utilizing
the linearly separability of the filter, the blurring can be done in one
direction at a time which is often much faster than using the 2D Gaussian
blur filter.

Interactive Real-time Smoke Rendering 23

3 Results and Discussion
This chapter concludes the result from the thesis work. Three different
solutions where developed. One based on soft particles, one based on
mega particles and finally one based on an experimental particle
technique using volumetric lighting. The implementation of the final
result into the renderer at Simbin is presented as well.

As a first step, the fluid smoke simulation demo from the DirectX10 SDK
was tested. Unfortunately, both speed and quality was unacceptable so
the idea was abandoned right away. This approach will probably mature
in the next years, but it's too early to implement it into a commercial
racing game. There are also still to many DirectX9 only computers among
the gaming population. So using a solution that requires DirectX10 or
later isn't appropriate yet.

3.1 Soft Particles

The first solution developed was a simple soft particles implementation.
It was only tested in RenderMonkey and a comparison with softness
enabled or disabled can be seen in Image 9.

The solution used the simple fade described in Chapter 2.7 . Depth was
rendered in view-space, and the billboarding was done in the vertex
shader (for simple testing). This technique is very robust, works well in
all situations and only requires Shader Model 1. Many games use this
solution to render large particles.

Interactive Real-time Smoke Rendering 24

Image 9: The left image shows a scene with a single large green particle.
Note the very distinct edge at the intersection of the particle quad and
the scene. In the image on the right, the same particle is rendered. But
this time, it's using the soft particles shader developed in this project. As
seen, the intersection is now much smoother.

One of the test cases, where a box uses the soft particle shader, can be
seen in Image 10. As seen, the distance-fade can have more uses than
just for particle systems.

3.2 Mega particles

A solution based on the mega particles technique described in chapter
2.8 was developed. This solution was only tested in RenderMonkey and
the very noticeable screen-door effect was verified. Since the technique
isn't based on any physical formulas or real life observations, the

Interactive Real-time Smoke Rendering 25

Image 10: Top left image shows the first pass that
renderer the scene, in this case a textured torus. Top right
image shows the second pass, rendering the scene depth.
Note that the lighter it is, the further away it is from the
viewer. The bottom image shows the final pass where a
textured cube is rendered using the soft particle shader.
Because of the smooth fade, it's possible to see into the
cube. It's behaving like fog. Note that there is no hard
intersection between the two objects anywhere.

implementation details of the shader and all parameters where decided
by testing.

The implemented method resulted in four sequential passes seen in
Image 11. First, all particles are rendered as spheres, lit with ordinary
Phong Lighting. This is rendered to an off-screen texture with at least
three color channels. In the next step, the off-screen texture is blurred
using the two-pass Gaussian blur filter.

At last, a full screen quad is rendered with the mega particles shader. The
vertex shader is a simple shader that stretches the quad over the screen
and creates texture coordinates for the vertices. These texture
coordinates should map to screen coordinates and are passed to the
fragment shader. In the fragment shader, the texture coordinates will
together with a time variable create a 3D texture coordinate. This 3D
texture coordinate is then used to sample from a 3D noise texture.
Because of the use of time in the texture coordinates. The result will vary
periodically when time passes. Creating the illusion of an animation as
seen in Image 12. The 3D noise sample is used as a seed when some
random samples are taken from the previously blurred texture.

The example code below shows how the 3D noise texture is sampled in

Interactive Real-time Smoke Rendering 26

Image 11: These four images shows the steps
involved in rendering smoke using the mega
particles technique. Top left image is a simple
sphere rendered to a texture. Top right image is
the sphere blurred in horizontal direction. Bottom
left image is the sphere blurred in horizontal
direction. And the bottom right image shows the
result of using the mega particles shader.

the fragment shader.

float2 coord =
tex3D(NoiseTexture,float3(Input.TexCoord*1.25,fTime/8.0f)).rg;

The result was something that looked like a cloud, lit by a light. Some
noticeable drawbacks are the difficulty in tweaking the noise sampling,
so the final result gets enough detail without looking too unrealistic.
Also, since the screen coordinates are used when sampling from the
noise texture, when the sphere moves, or the camera, there will be a
very noticeably shower-door effect.

3.3 Thick smoke with volumetric lighting

This is a new experimental technique based on the recent research in
how to render smoke, clouds and snow waves. It's also inspired by the
recent innovations in deferred rendering. Focus with the technique was
on rendering non-physically correct but visually convincing thick smoke.
Few other smoke rendering algorithms deal with thick white smoke.

The basic idea is to render the particles as spheres. All these spheres will
create the volume of the smoke. Then, lighting will be applied to this
volume by raytracing through it and collecting the contribution in the
direction of the light source. Some noise is also applied to add high
frequency details and make it more “cloud like”.

To create the volume for raytracing, the spheres must be rendered to
two textures. The first texture saves the min and max depth in the view
direction for the volume. The second texture saves the min and max
depth in the light direction for the volume. These two textures will then
approximate the volume of the cloud.

Drawbacks that initially were identified were the limit of only one light
source and the difficulty to fade away dying particles.

Interactive Real-time Smoke Rendering 27

Image 12: The image shows three random frames of a single mega
particle.

3.3.1 Test application

The test application was developed to easily test and tweak the
parameters of the deferred particle technique in a real DirectX9
application. The code was written to cleanly separate between test
application code and the smoke rendering engine code.

The test application code holds all the functionality necessary to launch,
load and exit the application. This code is inspired and partly copied from
the DirectX9 SDK examples. The GUI controls, for real-time tweaking of
variables, are also in this part of the code.

The smoke rendering engine is based on a set of abstract classes, making
the foundation of functionality required for rendering of the smoke. The
DirectX9 implementation inherits from these abstract classes, and
implement them accordingly to DirectX9 specification. This architecture
makes it easier to port the engine to other API's. Some of the more
important object oriented design patterns used are the factory method
(for textures), singleton (for the renderer instance) and adapter
(DirectX9 implementation) .

In the test application, the shader parameters of the smoke can be
changed and updated in real-time. This enables fast testing and
development. Image 13 shows what it looks like when running the test
application.

Interactive Real-time Smoke Rendering 28

3.3.2 Fake rendering a sphere

Rendering the particles as hundreds of spheres as meshes, with triangles
enough for the quality needed, would be slow. Therefore, the spheres
are rendered as billboarded quads. A shader is used when rendering
these quads and in this shader, an imaginary sphere, with center of the
billboard and size of the particle, is raytraced. The view vector is checked
against the sphere for intersection, the intersection points will be used
when saving the depth to the textures. Image 14 shows the difference
between rendering a sphere mesh and faking the sphere. There is some
error since the sphere mesh isn't truly spherical because its made up of
many tiny flat triangles.

Interactive Real-time Smoke Rendering 29

Image 13: This image shows the test application in
action with all the tweak-able parameters on the left.
They can be changed and the result will be updated in
real-time in the scene.

The drawback with the method is that no z-culling could be used. Since it
would cull wrong in this simple implementation.

3.3.3 Billboarding shader

The particle quadss are rendered by instancing to save bandwidth. The
instancing is done in two streams of data. The first stream is shared for
all particles. And the second stream is unique for each particle. The
second stream is updated each frame.

First stream holds following data:

– texture coordinates, for billboarding of the quad

Second stream holds following data:

Interactive Real-time Smoke Rendering 30

Image 14: In this example, Pass 0 renders a true sphere by doing rasterization of a
sphere mesh. In Pass 1, a quad is rendered and an imaginary sphere is raytraced.
For both these passes, the world position is written to a texture. In Pass 2, these
two world positions are compared and the difference is written to the screen. As
seen, most difference is around the edges of the sphere.

– particle position, the center position of the particle, used for
billboarding and in sphere intersection

– size, the size of the particle, used in billboarding and in sphere
intersection

– life, 0..1 range of the life of the particle with zero as dead and one as
fully alive. It's used to fade away the particle.

– texture translation, two coordinates that select which of the four
textures to use for this particle

– texture rotation, an angel used to rotate the texture for this particle

The billboarding of the quads were done in the vertex shader as
described in chapter 2.5.

3.3.4 Position reconstruction

There are two textures that save the position data.

1. A texture that save the min/max depth in the view direction for the
volume.

2. A texture that save the min/max depth in the light direction for the
volume.

Since no comparison between current fragment result and previous (in
the same render target) can be manually made in the shader, a blend
mode must be used to save a min or max value. Trying to save the actual
position with a min or max blend mode will fail because of obvious
reasons. Therefore, we have to save the depth instead and later
reconstruct the position from it as seen in Image 15.

Interactive Real-time Smoke Rendering 31

In this work, the projected screen space depth is stored in the texture.
This is far from optimal and better implementations should prefer view
space depth. But for simplicity, this work will use projected screen space
depth and reconstruct it the slow way by multiplying it with the inverse
view-projection matrix.

Because of the use of screen space depth in this work, 32-bit floating
point textures have to be used to store the depth with good enough
accuracy. Anything less will result in very noticeably artifacts.

3.3.5 Ambient lighting

Ambient lighting is an approximation of the scattered indirect lighting.
This lighting can lit areas in shadows, and also contribute with color
bleeding. Therefore , the ambient lighting of the smoke is approximated
by sampling from a cube map with a blurred image of the surrounding.
This works the same way as reflection mapping. And the normal used is
the direction from the center of the smoke to the closest position to the
screen of the volume for the current pixel. Image 16 shows the
difference with ambient lighting enabled or disabled.

Interactive Real-time Smoke Rendering 32

Image 15: This image shows
the world position of the
pixels of two particles. This
world position have been
reconstructed from the
depth of two raytraced
spheres in a previous pass.
The position coordinates
have simply been written to
the screen and naturally
colors the spheres. 0,0,0 ->
white, 1,1,1 -> black, 1,0,0 ->
red, and so on.

3.3.6 Texturing

Textures were used to symbolize the density of the smoke. The goal with
them was to add high frequency details to the smoke.

To simplify the shader, only the four different textures shown in Image 18
were used for the smoke particles, and the limit was hardcoded. These
textures were stored in a texture atlas with dimensions 2x2. To improve
the visual quality by giving even more diversity, the textures where
rotated in the vertex shader in a random angle.

Interactive Real-time Smoke Rendering 33

Image 16: The image at the top shows the smoke
with ambient lighting, the image at the bottom
shows the same smoke without any ambient
lighting.

Both rotation angle and what texture to use were sent to the shader as
particle properties.

The following HLSL snippet of code calculates the rotation and
translation matrix used when sampling from the texture atlas.

float sin;

float cos;

sincos(angle,sin,cos);

float2x2 rotationMatrix = { cos, -sin, sin, cos };

Input.texCoord = mul(Input.texCoord,rotationMatrix);

Input.texCoord = Input.texCoord*0.25f+Input.texTransform.xy;

3.3.7 Shadows

Most particle system implementations lack shadows because shadows
would make them to slow. This particle system technique does already
have all data needed to do shadows so adding shadows the final image
will only decrease performance a little. Since no actual polygon structure
exists for the smoke, shadow volumes cannot be used. Therefore,
shadow mapping was chosen. The two different parts of shadow
mapping technique are depth comparison and texture projection.

Interactive Real-time Smoke Rendering 34

Image 17: This image shows the four textures,
combined in a texture atlas, used as density textures
for the particles. Their goal was to add high
frequency details to the smoke.

Since this smoke will most likely only be applied to the ground, since it's
for a racing game. The comparison was skipped to simplify the solution.
Instead, the density texture, in the light direction, were simply projected
on the ground. The drawback with this method of doing shadows is that
anything between the light and the smoke will get shadowed as well. But
since this is not very likely in a racing game, the approximation was
accepted.

Because of the used lighting algorithm, the smoke will self shadow with
realistic soft shadows. This can be seen in Image 32 in Appendix.

3.3.8 Implementation

The smoke rendering consists of 9 passes.

Pass 1

Interactive Real-time Smoke Rendering 35

Image 18: This rendering shows the shadows
from the smoke in the test application. The light
is located to the upper left.

The first pass renders the scene depth to a texture. The scene depth is
stored in screen space in a 32-bit float texture.

Pass 2

In the second pass, all particles are rendered with the instancing method
described earlier. This is combined with billboarding, texture atlas and
the fake sphere rendering method. The camera used is a camera that is
located at the light position and looking in the light direction. The result
is saved in a 32-bit float texture, and the following is the data saved for
each fragment:

R-channel: Distance between the particle and near clip plane.

G-channel: Distance between the particle and far clip plane.

B-channel: not used

A-channel: Particle density

This in combination with the following blendmodes, BLENDOP_MIN for
color channels and BLENDOP_ADD for alpha channels results in the
following data will be stored in the final texture:

R-channel: Smallest depth (closest position) to the smoke volume.

G-channel: Largest depth (furthest position) to the smoke volume.

B-channel: not used

Interactive Real-time Smoke Rendering 36

Image 19: This image shows
the texture with the scene
depth.

A-channel: Smoke density

Pass 3

Same as Pass three but uses the normal view camera when rendering.
Also, channel B is used to store life. Because of the MIN blend mode, the
minimum life will be stored for the smoke at each screen position.

Pass 4,5

These two passes applies separable Gaussian Blur on the rendered
texture from pass 2. This is done do soften the lighting and shadows.

Interactive Real-time Smoke Rendering 37

Image 20: This image
shows the texture with the
depths and density.
Rendered from the lights
perspective.

Image 21: This image
shows the texture with the
depths, density and life.
Rendered with the normal
view camera.

Pass 6,7

These two passes applies separable Gaussian Blur on the rendered
texture from pass 3. This is done do soften the lighting and shadows.

Pass 8

In pass 8, the scene is rendered normally to the screen. This pass can be
rendered anytime during rendering and it can be split up in any number
of additional passes.

Pass 9

Shadows are rendered in this pass. Both from the smoke and from the
scene. This can of course be separated in a real application.

Interactive Real-time Smoke Rendering 38

Image 22: This images
shows the result after
blurring the texture from
pass 2.

Image 23: The scene
rendered with simple light-
mapping.

Pass 10

The final pass is the most important one. It's in this pass that the actual
rendering of the smoke to the screen happens.

First, both far and near positions are reconstructed in both world space
and view space.

Then, the volume is raytraced and for each sample, the scattering
contribution is gathered and added to an accumulating shadowing value.
This will give the resulting shadowing and shading of the smoke.

The alpha of the smoke is decided upon the life of the particle, the
density, and the distance to the scene. The distance contribution is
calculated as in soft particles, it's a simple fade when the volume is to
close to the scene, to remove any visible intersections.

A color value for the smoke is sampled from an one dimensional texture,
using life as the texture coordinate. This enables artist to easily create
any color range for the system. The ambient term, sampled from a
cubemap, is finally added to the resulting color.

Interactive Real-time Smoke Rendering 39

Image 24: Scene with
projected shadows from both
the smoke and the scene
itself.

3.3.9 Particle simulation

The particles were simulated on the CPU as a basic particle system. The
particles where emitted by an cone shaped emitter.

At spawn, all particles where given a random life-time, a random texture,
a random speed and a random texture rotation angle.

3.3.10 Performance

Very little optimizations were done but performance was acceptable
anyway. Following fps were measured on two different hardware:

GPU Resolution Average FPS

NVIDIA GeForce 8800 GT 800x800 85

NVIDIA GeForce 8800 GT 1280x1024 60

NVIDIA GeForce GTX 260 800x800 50

NVIDIA GeForce GTX 260 1280x1024 50

Because of the deferred nature of the algorithm, the amount of smoke
on the screen doesn't affect the performance as much as in an ordinary
particle system.

What could have been optimized more:

– rewrite shader code in a more optimized way

– use view-space instead of projection space depth

– try to step less times when collecting scattering contribution

– find optimal combination of size and amount of particles

Interactive Real-time Smoke Rendering 40

Image 25: Final scene with
the smoke rendered.

– use the bounding box of the particle system instead of a fullscreen
quad when blurring and rendering the final shader

– render the smoke to a texture smaller than the screen

3.3.11 Problem areas

The smoke rendering method described in this chapter have some
serious problem areas that prevent an implementation in a real game.
The two main problems are that dead particles cannot easily fade away
and the camera is not allowed to be inside the smoke.

When the smoke particles die, they should fade away slowly. Fading the
density is easy, since it can be multiplied with the life of the particle. But
the position of the particle cannot be manipulated. There is no way to
smoothly fade away the particle since it will either write the depth or it
won't. There is nothing in between. This limitation was the main reason
for no further development on this algorithm. The limitation makes the
smoke flicker where it's close to the parts that's fading away. A solution
not tested in this project, would be to use simply soft particles for the
particles with low life and therefore are very transparent.

Interactive Real-time Smoke Rendering 41

Image 26: These two images shows how the smoke fades away when
it dies. There are only half a second between the images.

No work or research have been put into finding a solution to the
problem with a camera inside the smoke as can be seen in image 27.
The algorithm can currently not deal with this situation. But there are
no known limitations that makes it impossible to adopt the algorithm to
handle this case in a nice manner.

Another little limitation with the algorithm has to do with the
approximation of the smoke volume. Since holes in the volume are
filled by the approximation, this can give very wrong visual result
sometimes as seen in Image 28. A solution to this is to divide the smoke
rendering into many passes. So the smoke in the back is rendered
separately from the smoke in the front. The drawback is that this would
be slower and more complex.

Interactive Real-time Smoke Rendering 42

Image 27: The image on the left shows the smoke
before moving the camera inside it. The image on
the right shows how it looks like when standing in
the middle of the smoke.

This can be concluded in that the algorithm is not robust enough for a
real implementation.

3.4 The Simbin implementation

Before the actual implementation into the rendering system that Simbin
has, an evaluation took place of the tested smoke rendering methods.
The best candidate were then tested and implemented in the renderer.

3.4.1 Old smoke rendering system

The old way to render smoke in the CUBE renderer was to use a simple
particle system with emitters at the wheels. The particles where
textured but this texture was neither rotated nor animated.

The particles were view-plane aligned on the CPU before rendered
using either a shader or the fixed-function pipeline. Some particles
could be lit by a single directional light. Since the particle system didn't
have any soft particles implementation, it used very high alpha on the
textures to make them nearly invisible to avoid any artifacts at edges.
Also, all particles were spawned above the ground as Image 29 shows,
to avoid the intersection with the ground. This cheat made the smoke
look less realistic and hard to tweak for the artist, but at the same time
avoided what could have been very noticeable artifacts.

Interactive Real-time Smoke Rendering 43

Image 28: Here we can see that the algorithm doesn't
correctly handle the case when there is empty space between
the smoke in the front and the smoke in the back. Therefore,
the smoke in the back will give a dark silhouette.

The effects are loaded as reaction. A reaction could be smoke, or rain
dust from the wheel. These reactions were stored in a simple data file
for easy tweaking without recompilation of the source code.

3.4.2 Evaluation

Soft particles is an easy technique to render smoke with good quality
and realism. It's stable and work on all modern gaming hardware and
it's the method most games are using nowdays.

Mega particles is too unstable and low quality to be used.

The smoke with volumetric lighting is unfortunately to unstable to be
used in a real product. There are still to many issues to solve. It's also
quite demanding on the hardware.

Soft particles were chosen as smoke rendering method because of it's
proven stability and simplicity.

3.4.3 Problems

The largest problem with the implementation was that the CUBE
renderer didn't have any built in support for rendering to a texture. The
engine did have a similar functionality but it was only developed for
rendering sprites to a texture. A more general solution would have been
good. Most engines today rely heavily on this functionality shadows,
lighting and post-process effects.

Some time had to be spent on implementing a general render to
texture functionality into the CUBE renderer.

Since the whole engine and game is undocumented, expect for source

Interactive Real-time Smoke Rendering 44

Image 29: The particle sprites (gray
rectangles) are carefully placed
hovering above the ground (black line
) to avoid any intersection because
the lack of a soft particles
implementation.

code comments, a lot of time had to be spent on searching,
understanding and testing the code.

Much code in the the renderer were no longer used. To understand the
real pipeline, this dead code were removed as the example below
shows. In the example, the case that never does any work is
commented out, and an assertion were added instead, to verify that
this code never would be used.

assert(pScene->mParticleSystem.Begin() == NULL);

/*

if (pView->Flags() & CUBEVIEW_RENDERPARTICLES)

{

cubeParticleSystem *ps = pScene->mParticleSystem.Begin();

while (ps)

{

ps->Render (pScene, pView);

ps = pScene->mParticleSystem.Next();

}

}

*/

3.4.4 Result

The resulting implementation seen in Image 30 worked well and made
it possible to increase the alpha of particles and make them more
visible without ugly intersection artifacts.

The depth texture can in the future be the used for other post-
processes like Screen Space Ambient Occlusion, Depth Of Field, Motion
Blur, and Soft Shadows.

Only the render to texture functionality were borrowed from the test
application.

Interactive Real-time Smoke Rendering 45

Not much difference can be seen in the game after the implementation
of soft particles. But this was expected since this addition should be
treated as a tool for game designers and artist. They should be able to
improve the quality of the smoke in the game, because they can now
allow intersections and increased alpha. Without the risk of visual
artifacts. The soft particles implementation isn't restricted to smoke,
but can also enhance other particle effects, like for example water and
dirt splashes.

As can be seen in Table 1, the measured fps drop with soft particles
instead of normal hard particles were only 5-10%. One reason the
difference is so small, is that particles are rarely on the scene. The
bottle-head in the pipeline could not have been in the pixel shader
stage. The game is most likely CPU bound on the test setup. Even if the
performance drop is slim, two optimization methods were tested.

The first one utilizes the prepass which renders the scene depth. This
pass also writes to the z-buffer (must do so) and this can later be
utilized when rendering the scene normally. Since the correct depth is
already written to the z-buffer, the second pass can use the EQUAL z-
comparator, and skip writing to the z-buffer. This could speed up the
rendering if there is a lot of over-draw in the scene and the geometry
uses complex shaders. But this optimization strategy didn't improve
performance accordingly to measurements.

The second optimization strategy was to render the particles to an off
screen texture with size ¼ of the full screen. If the pipeline were fillrate-
limited, this would improve performance a lot. Unfortunately, the
implementation only slowed down rendering, so the application was
not fill-rate limited.

Interactive Real-time Smoke Rendering 46

Image 30: The image on the right shows the rendered linear depth of the scene.
The image on the left shows the same scene rendered with soft particles.

Method Setup Min FPS Max FPS Average FPS

Hard Particles Fullscreen,
1280x1024, Max
quality

102 416 212

Soft Particles, no
optimizations

Fullscreen,
1280x1024, Max
quality

104 384 194

Soft Particles, utilize
prepass z-buffer

Fullscreen,
1280x1024, Max
quality

105 376 190

Soft Particles, render
particles to ¼ of
fullscreen sized
texture

Fullscreen,
1280x1024, Max
quality

104 264 166

Table 1: This table shows the four methods of rendering particles that
were tested and measured in the CUBE renderer.

3.5 Tool usage

This work could not have been done without the tools used. Especially
RenderMonkey provided a good environment for fast prototyping of the
shaders. Unfortunately, the tool is full of of bugs which slowed down
development. There is so far no best option of IDE for shader
development. Most probably since it's a new field of software
engineering. Developing a high-quality commercial IDE for shader
development might be a good business opportunity for a company.

One important feature lacking in RenderMonkey is that when using
different cameras, they share view and projection matrix. So only one
camera matrix can be used at a time. When doing for example shadow
mapping, both current camera matrix and light camera matrix is needed
in the same shader. This isn't possible without a workaround in
RenderMonkey. To solve this, an additional pass was added that
rendered the camera matrix to a 32-bit float texture. When this matrix
had to be used, it was sampled from this texture. The solution is of
course slow, but made it possible to develop without these restrictions of
one camera only.

RenderMonkey is also very restricted in what data can be sent to the
shader. No instancing is possible, and no user defined values per vertex.

Some bugs in RenderMonkey worth to mention are the following:

– View direction is wrong, it's not the same as:

- normalize(viewPosition)

Interactive Real-time Smoke Rendering 47

– The FX Exporter exports render states with mistyped names

– Undo doesn't always work

But even if it misses the mentioned features and have the bugs above,
it's a very good IDE for shader development and prototyping.

The Microsoft DirectX10 SDK served as a good tutorial of how DirectX9
and DirectX10 should be best used. Some code from the SDK was reused
in the test application in this decreased development time.

For implementation in the CUBE renderer, PIX was an invaluable tool that
helped debugging most issues. The simplicity to debug single pixels,
shaders and render targets was very useful. Without the tool, the
implementation would have been much slower, since a debugging
environment would have too be developed. The only thing PIX couldn't
debug was timing issues between CPU and GPU. The reason is that PIX is
rendering slower than the stand alone application, so a timing issue
might disappear. During development of the Simbin implementation, one
bug was only visible in the application, but not when run through PIX.

Interactive Real-time Smoke Rendering 48

4 Conclusion
Three different methods to render smoke were evaluated. Soft particles
proved to be a reliable, visually appealing method to render smoke.
Mega particles is both hard for artist to control and suffers from a
shower door effect. The smoke with volumetric lighting method wasn't
developed to completion. Therefore, it was unstable and had visual
artifacts. If more work were put in this method, it could be a good
candidate for real use. The results of the three methods tested
motivated the choice to use soft particles in the CUBE renderer.

The implementation of soft particles were quite easy. Although a flexible
way of rendering to a texture were missing and had to be implemented
as well. The result were a good looking smoke without any visible
artifacts. Now, artist and game designers can use any alpha or sprites
they want, without need to bother about intersections.

Interactive Real-time Smoke Rendering 49

Image 31: The result of the smoke with
volumetric lighting.

4.1 Future work

The smoke with volumetric lighting can probably be extended a lot with
future work. The most stable solution might be a combination with soft
particles. But this has to be tested and evaluated.

When taking samples inside the volume. Not much time have been spent
on understanding the impact of the number of samples or where they
are taken. It might be enough to take much fewer samples, if they are
carefully positioned.

With the current limitations of smoke with volumetric lighting, it cannot
be used in racing games. But maybe in other games or visualizations, for
example volumetric clouds.

Interactive Real-time Smoke Rendering 50

5 References
[1] T. Lorach, “Soft Particles”, NVIDIA, 17 January 2007,

http://developer.download.nvidia.com/whitepapers/2007/SDK10/SoftParticles_hi.p
df, December 2009

[2] T. Umenhoffer, L. Szirmay-Kalos, G. Szijártó, "Sperical Billboards and their
Application to Rendering Explosions", Department of Control Engineering and
Information Technology,
http://www.iit.bme.hu/~szirmay/firesmoke.pdf , December 2009

[3] M. Krazanowski, "A More Accurate Volumetric Particle Rendering Method Using the
Pixel Shader", Gamasutra article,
http://www.gamasutra.com/view/feature/3680/a_more_accurate_volumetric_.ph
p, December 2009

[4] Microsoft, "SoftParticles Sample", DirectX10 SDK (August 2009),
http://msdn.microsoft.com/en-us/library/bb172449(VS.85).aspx, December 2009

[5] H. Bahnassi, W. Bahnassi, “Volumetric Clouds and Mega Particles",
http://www.inframez.com/events_volclouds_slide01.htm, December 2009

[6] M. Deering, S. Winner, B. Schediwy, C. Duffy, N. Hunt, “The Triangle Processor and
Normal Vector Shader: A VLSI System for High Performance Graphics”, ACM, New
York, NY, USA, 1988

[7] W. F. Engel et. al, "Shader X2 Introductions & Tutorials with DirectX 9", Wordware
Publishing inc, 2004

[8] M. Pharr, et. al, “Deferred Shading in S.T.A.L.K.E.R” in GPU Gems 2, 2005

[9] M. Pettineo, “Reconstructing Position From Depth, Continued”,
http://mynameismjp.wordpress.com/2009/05/05/reconstructing-position-from-
depth-continued/, December 2009

[10] M. Mittring, “Finding next gen: CryEngine 2”, Crytek GmbH,
http://ati.amd.com/developer/SIGGRAPH07/Chapter8-Mittring-
Finding_NextGen_CryEngine2.pdf, December 2009

[11] “Improve Batching Using Texture Atlases”, NVIDIA SDK White Paper, July 2004,
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_A
tlas_Whitepaper.pdf, December 2009

[12] I. Ivanov, “Practical Texture Atlases”, Gamasutra article,
http://www.gamasutra.com/features/20060126/ivanov_01.shtml, December 2009

[13] T. Akenine-Möller, E. Haines, N. Hoffman,“Real-Time Rendering, Second Edition”,
2008

[14] A. R. Fernandes, “Billboarding Tutorial”,
http://www.lighthouse3d.com/opengl/billboarding/billboardingtut.pdf, December
2009

[15] S. Premoze et al. “Practical Rendering of Multiple Scattering Effects in Participating
Media”, Columbia University and Stony Brook University, Eurographics Symposium
on Rendering (2004)

[16] A. Wiley, T. Scheuermann, “The Art and Technology of Whiteout”, SIGGGRAPH
2007 Tech Talk

Interactive Real-time Smoke Rendering 51

6 Appendix

6.1 Passes when rendering smoke with volumetric lighting

Interactive Real-time Smoke Rendering 52

6.2 Soft self-shadowing

Interactive Real-time Smoke Rendering 53

Image 32: These three images shows how
the large ball realistically shadows the
small one when it moves.

6.3 VPOS

Starting with DirectX Pixel Shader Model 3.0 there exist a new input type
called VPOS. It's the current pixels position on the screen and it's
automatically generated. This can be useful when sampling from a
previously rendered texture when rendering an arbitrarily shaped mesh
to the screen. To do this, we need uv-coordinates that represents where
to sample on the texture. These coordinates can be gained by simply
dividing VPOS with the screen dimensions.

When working with older hardware, that doesn't support shader model
3.0, there is a need to manually create the VPOS in the vertex shader and
pass it to the fragment shader as a TEXCOORD. This is the way to do so
(including the scaling to uv-range which manually has to be done for
VPOS if you're using it).

Vertex Shader:

float4x4 matWorldViewProjection;

float2 fInverseViewportDimensions;

struct VS_INPUT

{

 float4 Position : POSITION0;

};

struct VS_OUTPUT

{

 float4 Position : POSITION0;

 float4 calculatedVPos : TEXCOORD0;

};

float4 ConvertToVPos(float4 p)

{

 return float4(0.5*(float2(p.x + p.w, p.w - p.y) +
p.w*fInverseViewportDimensions.xy), p.zw);

}

VS_OUTPUT vs_main(VS_INPUT Input)

{

 VS_OUTPUT Output;

 Output.Position = mul(Input.Position, matWorldViewProjection);

 Output.calculatedVPos = ConvertToVPos(Output.Position);

 return(Output);

}

Pixel Shader:

float4 ps_main(VS_OUTPUT Input) : COLOR0

Interactive Real-time Smoke Rendering 54

{

 Input.calculatedVPos /= Input.calculatedVPos.w;

 return float4(Input.calculatedVPos.xy,0,1); // test render it to the screen

}

Image 33 shows an elephant model rendered with the shader above. As
can be seen, the color (red and green channels) correctly represents the
uv-coordinates for a fullscreen quad. Since 0,0,0 = black, 1,0,0 = red,
0,1,0 = green, 1, 1,0 = yellow.

6.4 Reference images

This is a part of the collection of reference images of thick white smoke
collected before starting the work. All these images are creative common
licensed, and allowed to be used commercially.

Interactive Real-time Smoke Rendering 55

Image 33: This image
shows an elephant model
rendered using the manual
vPos shader. As can be
seen, the color (red and
green channels) correctly
represents the uv-
coordinates for a fullscreen
quad. Since 0,0,0 = black,
1,0,0 = red, 0,1,0 = green,
1, 1,0 = yellow.

http://www.flickr.com/photos/racecarphotos/2870172056/

http://www.flickr.com/photos/ariander/3642486348/

http://www.flickr.com/photos/ericcastro/1573080019/

Interactive Real-time Smoke Rendering 56

http://www.flickr.com/photos/racecarphotos/2870172056/
http://www.flickr.com/photos/ericcastro/1573080019/
http://www.flickr.com/photos/ariander/3642486348/

http://www.flickr.com/photos/iraxmas/1425419766/

6.5 Work in progress images

A collection of images taken during development, showing the progress.

Interactive Real-time Smoke Rendering 57

Image 34: One of the first images of the rendering of smoke
with volumetric lighting. This image shows how the lighting is
approximated by the cheating version of multiple scattering.
This is before any noise or texturing is added.

http://www.flickr.com/photos/iraxmas/1425419766/

Interactive Real-time Smoke Rendering 58

Image 36: This image shows the lighting of the smoke, when
combining with density texture and noise.

Image 35: This image demonstrate the first tests with
multiple particles. As seen, there are still many artifacts that
later in the development process were removed.

Interactive Real-time Smoke Rendering 59

Image 37: One of the first tests with
objects intersecting the smoke. Note that
there is a small vase inside the smoke.

Image 38: Here shadows are tested. Both the scene and
the smoke casts shadows. The smoke shadows are simply
projected while the scene is using real exponential
shadow mapping.

Interactive Real-time Smoke Rendering 60

Image 39: First test of the smoke in the test
application. Here, it's slowly rising as very
thick white smoke.

Image 40: This image shows that the smoke can be simulated
realistically. Here it's spawned from a moving emitter that moves
around in a circle.

6.6 Documentation of CUBE Renderer

The following is the documented behavior of the renderer, consisting of
information gained from testing. It was used as a reference when
implementing the final solution. There are three important phases in a
game. The init sequence and the game loop which consist of an update
sequence and a rendering sequence.

Init sequence

Game::Init(..) - might multithread the game, otherwise just runs InitProc

Game::InitProc(..) - initializes all components of the game, including the
gSpecialFX component

SpecialFX::init() - reads all the reactions from file (as settings), reads
some reactions from terrain file, loads the reactions

Reaction::Load(..) - initializes the reaction and creates a particle system
by calling a factory method

cubeScene::CreateParticleSystem(..) - creates a new particle system, and
adds it's particles to the correct array

cubeParticleSystem::Initialize(..) - calls either initInternalParticle() or

Interactive Real-time Smoke Rendering 61

Image 41: Final render of the smoke, this time with the projected
shadows from the smoke onto the ground.

InitGMTParticle()

cubeParticleSystem::InitInternalParticle(data) - inits the particle systems

Render sequence

Game::Dyn()

Render::Dyn() - handles dev. shortcut keys , render the scene

cubeScene::Render(..) - updates the lights, perform animations, renders
the scene with the different viewports (cubeViews)

cubeView::Render(...) - render shadow maps, calls render objects

cubeDirectX::RenderObjects(...) - sets cam. parameters as (view, fov,
clipplanes), sorts in buckets (called phases by cube) and renders them all

Update sequence

Game::Dyn()

SpecialFX:Dyn() - updates the special effects, including the reactions

Reaction::Continue(float* currentVehicleCollisionAmount) – called for each
reaction, uses a switch to selected correct behaviour

Reaction::Continue...(...) - specific for each type of reaction (hardcoded
in specialfx.cpp), updates position of the particles

Interactive Real-time Smoke Rendering 62

	1 Introduction
	1.1 Background
	1.1.1 SimBin

	1.2 Goal
	1.2.1 Limitations

	1.3 Method
	1.3.1 Software development process
	1.3.2 Software architecture
	1.3.3 NVIDIA FxComposer 2.0
	1.3.4 RenderMonkey 1.6
	1.3.5 Microsoft DirectX9 SDK
	1.3.6 Microsoft Visual Studio
	1.3.7 PIX

	2 Theory
	2.1 Rendering pipeline
	2.2 Shaders
	2.3 Instancing
	2.4 Particle systems
	2.5 Billboarding
	2.6 Fluid simulation
	2.7 Soft particles
	2.8 Mega Particles
	2.9 Lighting theory
	2.10 Deferred Rendering
	2.11 Position reconstruction
	2.12 Texture atlas
	2.13 Ray-sphere intersection
	2.14 Gaussian blur

	3 Results and Discussion
	3.1 Soft Particles
	3.2 Mega particles
	3.3 Thick smoke with volumetric lighting
	3.3.1 Test application
	3.3.2 Fake rendering a sphere
	3.3.3 Billboarding shader
	3.3.4 Position reconstruction
	3.3.5 Ambient lighting
	3.3.6 Texturing
	3.3.7 Shadows
	3.3.8 Implementation
	3.3.9 Particle simulation
	3.3.10 Performance
	3.3.11 Problem areas

	3.4 The Simbin implementation
	3.4.1 Old smoke rendering system
	3.4.2 Evaluation
	3.4.3 Problems
	3.4.4 Result

	3.5 Tool usage

	4 Conclusion
	4.1 Future work

	5 References
	6 Appendix
	6.1 Passes when rendering smoke with volumetric lighting
	6.2 Soft self-shadowing
	6.3 VPOS
	6.4 Reference images
	6.5 Work in progress images
	6.6 Documentation of CUBE Renderer

